Initial commit: Final state of the master project

This commit is contained in:
2017-09-16 09:41:37 +02:00
commit 696180d43b
832 changed files with 169717 additions and 0 deletions

View File

@@ -0,0 +1,490 @@
#pragma once
#include "../Defines.h"
#include "../BitHelper.h"
#include "../CollectionHelper.h"
#include "../Serializer.h"
#include "../../inc/tbb/parallel_for_each.h"
#include "../../inc/tbb/parallel_for.h"
#include <unordered_map>
#include <functional>
#include <iostream>
#include <cassert>
template<typename T>
class BinaryTree
{
private:
template<typename U>
struct BinaryTreeNode
{
private:
BinaryTreeNode<U>* mChildren[2];
BinaryTree<U>* mTree;
T mMaterial;
inline unsigned8 GetChildIndex(size_t coordinate, unsigned8 levelsLeft) const {
return BitHelper::GetLS(coordinate, levelsLeft) ? 1 : 0;
}
inline BinaryTreeNode<U>* GetNodeAt(size_t coordinate, unsigned8 levelsLeft) const
{
return mChildren[GetChildIndex(coordinate, levelsLeft)];
}
public:
BinaryTreeNode(BinaryTree<U>* tree) :
mTree(tree)
{
mChildren[0] = mChildren[1] = NULL;
}
~BinaryTreeNode() {}
BinaryTreeNode* GetChild(unsigned8 index) const
{
assert(index < 2);
return mChildren[index];
}
void SetChild(BinaryTreeNode<U>* child, unsigned8 index) { mChildren[index] = child; }
size_t GetChildCount() const
{
return
(mChildren[0] == NULL ? 0 : 1) +
(mChildren[1] == NULL ? 0 : 1);
}
bool IsLeaf() const { return mChildren[0] == NULL && mChildren[1] == NULL; }
BinaryTreeNode<U>* AddNode(size_t coordinate, unsigned8 levelsLeft)
{
auto node = GetNodeAt(coordinate, levelsLeft);
if (node == NULL)
{
node = mTree->Create();
SetChild(node, GetChildIndex(coordinate, levelsLeft));
}
if (levelsLeft == 0)
return node;
else
return node->AddNode(coordinate, levelsLeft - 1);
}
U GetValueAt(size_t coordinate, unsigned8 levelsLeft) const
{
auto node = GetNodeAt(coordinate, levelsLeft);
if (node == NULL) return GetValue();
if (levelsLeft == 0) return node->GetValue();
return node->GetValueAt(coordinate, levelsLeft - 1);
}
U GetValue() const { return mMaterial; }
void SetValue(const T& material) { mMaterial = material; }
void Traverse(const std::function<void(const BinaryTreeNode<U>*)>& f) const
{
f.operator()(this);
if (mChildren[0] != NULL) mChildren[0]->Traverse(f);
if (mChildren[1] != NULL) mChildren[1]->Traverse(f);
}
static bool Compare(BinaryTreeNode<U>* a, BinaryTreeNode<U>* b)
{
if (a->GetChild(0) != b->GetChild(0)) return (size_t)a->GetChild(0) < (size_t)b->GetChild(0);
if (a->GetChild(1) != b->GetChild(1)) return (size_t)a->GetChild(1) < (size_t)b->GetChild(1);
return a->GetValue() < b->GetValue();
}
static bool Equals(BinaryTreeNode<U>* a, BinaryTreeNode<U>* b)
{
if (a == b) return true;
if (a == NULL || b == NULL) return false;
return a->GetChild(0) == b->GetChild(0) && a->GetChild(1) == b->GetChild(1) && a->GetValue() == b->GetValue();
}
};
unsigned8 mDepth;
BinaryTreeNode<T>* mRoot;
std::vector<BinaryTreeNode<T>*> mNodePool;
std::vector<BinaryTreeNode<T>*> GetNodes()
{
std::vector<BinaryTreeNode<T>*> res;
std::function<void(const BinaryTreeNode<T>*)> nodeFinder = [&](const BinaryTreeNode<T>*) { res.push_back(this); };
mRoot->Traverse(nodeFinder);
CollectionHelper::Unique(res);
return res;
}
void ShiftDown(unsigned8 levels)
{
// Shifts the root down the given number of levels
if (levels == 0) return;
for (unsigned8 i = 0; i < levels; i++)
{
BinaryTreeNode<T>* newRoot = Create();
newRoot->SetChild(mRoot, 0);
BinaryTreeNode<T>* oldRoot = mRoot;
mRoot = newRoot;
mNodePool[0] = newRoot;
mNodePool[mNodePool.size() - 1] = oldRoot;
}
}
static void CalculateNodeLevelsRecursive(BinaryTreeNode<T>* node, unsigned8 level, std::vector<unsigned8>& nodeLevels, const std::unordered_map<BinaryTreeNode<T>*, size_t>& nodeIndices)
{
assert(nodeIndices.find(node) != nodeIndices.end());
auto nodeIndex = nodeIndices.find(node);
nodeLevels[nodeIndex->second] = level;
for (unsigned8 child = 0; child < 2; child++)
{
auto childNode = node->GetChild(child);
if (childNode != NULL)
CalculateNodeLevelsRecursive(childNode, level + 1, nodeLevels, nodeIndices);
}
}
// Calculates the levels of all nodes. Levels are stored in the same order as the node pool.
std::vector<unsigned8> CalculateNodeLevels() const
{
auto nodeIndices = CollectionHelper::GetIndexMap(mNodePool);
std::vector<unsigned8> nodeLevels(mNodePool.size());
CalculateNodeLevelsRecursive(mRoot, 0, nodeLevels, nodeIndices);
return nodeLevels;
}
inline static size_t GetNodePointer(const size_t& index, const size_t& pointerSize, const size_t& valueSize, const size_t& firstLeafIndex, const bool& onlyLeafsContainValues)
{
if (!onlyLeafsContainValues)
return 2 + index * (pointerSize * 2 + valueSize);
else
{
size_t pointer = 2 + std::min(index, firstLeafIndex) * (pointerSize * 2);
if (index > firstLeafIndex)
pointer += (index - firstLeafIndex - 1) * (pointerSize * 2 + valueSize);
return pointer;
}
}
public:
BinaryTree()
{
mDepth = 0;
mRoot = Create();
}
~BinaryTree()
{
tbb::parallel_for_each(mNodePool.begin(), mNodePool.end(), [](BinaryTreeNode<T>* node) { delete node; });
mNodePool.clear();
}
void AddLeafNode(size_t coordinate) { AddNode(coordinate, mDepth); }
void AddNode(size_t coordinate, unsigned8 level)
{
assert(level <= mDepth);
mRoot->AddNode(coordinate, level);
}
T GetValueAtLeaf(size_t coordinate) const { return GetValueAtNode(coordinate, mDepth); }
T GetValueAtNode(size_t coordinate, unsigned8 level) const
{
assert(level <= mDepth);
return mRoot->GetValueAt(coordinate, level);
}
void SetValueAtLeaf(size_t coordinate, T value) { SetValueAtNode(coordinate, mDepth, value); }
void SetValueAtNode(size_t coordinate, unsigned8 level, T value)
{
assert(level <= mDepth);
auto node = mRoot->AddNode(coordinate, level);
node->SetValue(value);
}
BinaryTreeNode<T>* Create()
{
BinaryTreeNode<T>* newNode = new BinaryTreeNode<T>(this);
mNodePool.push_back(newNode);
return newNode;
}
void SetDepth(unsigned8 wantedDepth, bool shiftExisting)
{
if (mDepth != wantedDepth)
{
if (wantedDepth < mDepth)
ShaveUntil(wantedDepth);
else
ShiftDown(wantedDepth - mDepth);
}
mDepth = wantedDepth;
}
// Deletes all nodes of which the level is greater than the given level
void ShaveUntil(unsigned8 level)
{
// Calculate the level for all nodes
std::vector<unsigned8> nodeLevels = CalculateNodeLevels();
for (size_t i = 0; i < mNodePool.size(); i++)
if (nodeLevels[i] > level)
{
delete mNodePool[i];
mNodePool[i] = NULL;
}
else if (nodeLevels[i] == level)
{
// Set all pointers to NULL:
for (unsigned8 child = 0; child < 2; child++) mNodePool[i]->SetChild(NULL, child);
}
mNodePool.erase(std::remove_if(mNodePool.begin(), mNodePool.end(), [](const BinaryTreeNode<T>* node) { return node == NULL; }));
}
void ReplaceValues(const std::unordered_map<T, T>& replacers)
{
tbb::parallel_for(size_t(0), mNodePool.size(), [&](const size_t& i)
{
T curValue = mNodePool[i]->GetValue();
auto replacer = replacers.find(curValue);
if (replacer != replacers.end())
mNodePool[i]->SetValue(replacer->second);
});
}
void Serialize(std::ostream& file) const
{
Serializer<unsigned8>::Serialize(mDepth, file);
// Write the number of nodes in the binary tree:
Serializer<unsigned64>::Serialize((unsigned64)mNodePool.size(), file);
// Write the node materials
for (size_t i = 0; i < mNodePool.size(); i++)
Serializer<T>::Serialize(mNodePool[i]->GetValue(), file);
// Write (consequtively) the child pointers
std::unordered_map<BinaryTreeNode<T>*, size_t> nodeIndices = CollectionHelper::GetIndexMap(mNodePool);
for (size_t i = 0; i < mNodePool.size(); i++)
for (unsigned8 child = 0; child < 2; child++)
{
// Use 0 as NULL pointer, add 1 to all actual pointers
BinaryTreeNode<T>* childNode = mNodePool[i]->GetChild(child);
unsigned64 pointer = 0;
if (childNode != NULL)
{
assert(nodeIndices.find(childNode) != nodeIndices.end());
pointer = nodeIndices[childNode] + 1;
}
Serializer<unsigned64>::Serialize(pointer, file);
}
}
void Deserialize(std::istream& file)
{
if (mNodePool.size() > 1)
{
for (auto node = mNodePool.begin(); node != mNodePool.end(); node++)
delete *node;
mNodePool.resize(1);
}
Serializer<unsigned8>::Deserialize(mDepth, file);
unsigned64 nodeCount;
Serializer<unsigned64>::Deserialize(nodeCount, file);
// The root is always already created, so create nodeCount - 1 nodes:
for (size_t i = 0; i < nodeCount - 1; i++) Create();
// Deserialize the materials for each node
T dummy;
for (size_t i = 0; i < nodeCount; i++)
{
Serializer<T>::Deserialize(dummy, file);
mNodePool[i]->SetValue(dummy);
}
// Create all pointers
for (size_t i = 0; i < mNodePool.size(); i++)
for (unsigned8 child = 0; child < 2; child++)
{
unsigned64 pointer;
Serializer<unsigned64>::Deserialize(pointer, file);
if (pointer != 0)
mNodePool[i]->SetChild(mNodePool[pointer - 1], child);
}
}
// Converts the current binary tree to a DAG, meaning that all duplicate nodes are removed.
void ToDAG()
{
// Fill the current layer with all leaf nodes
std::vector<BinaryTreeNode<T>*> dagNodePool(1, mRoot);
std::vector<BinaryTreeNode<T>*> currentLayer;
std::unordered_set<BinaryTreeNode<T>*> nodesLeft;
std::unordered_map<BinaryTreeNode<T>*, std::vector<BinaryTreeNode<T>*>> parentsMap;
for (auto node : mNodePool)
{
if (node->IsLeaf()) currentLayer.push_back(node);
else
{
nodesLeft.insert(node);
for (unsigned8 child = 0; child < 2; child++)
{
auto childNode = node->GetChild(child);
if (childNode != NULL)
{
auto parent = parentsMap.find(childNode);
if (parent == parentsMap.end())
parentsMap.insert(std::make_pair(childNode, std::vector<BinaryTreeNode<T>*>(1, node)));
else
parent->second.push_back(node);
}
}
}
}
while (!currentLayer.empty() && currentLayer[0] != mRoot)
{
// Find unique nodes and replace them
tbb::parallel_sort(currentLayer.begin(), currentLayer.end(), [](BinaryTreeNode<T>* a, BinaryTreeNode<T>* b) { return BinaryTreeNode<T>::Compare(a, b); });
BinaryTreeNode<T>* cur = NULL;
std::vector<std::pair<BinaryTreeNode<T>*, BinaryTreeNode<T>*>> replacements;
std::vector<BinaryTreeNode<T>*> nextLayer;
size_t uniqueNodes = 0;
for (auto node : currentLayer)
{
if (BinaryTreeNode<T>::Equals(node, cur))
// Make sure that all nodes are replaced by their equals
replacements.push_back(std::make_pair(node, cur));
else
{
uniqueNodes++;
cur = node;
dagNodePool.push_back(cur);
}
auto parents = parentsMap.find(node);
if (parents != parentsMap.end())
nextLayer.insert(nextLayer.end(), parents->second.begin(), parents->second.end());
}
CollectionHelper::Unique(nextLayer, [](BinaryTreeNode<T>* a, BinaryTreeNode<T>* b) { return BinaryTreeNode<T>::Compare(a, b); });
if (uniqueNodes != currentLayer.size())
{
for (auto replacement : replacements)
{
auto toReplace = replacement.first;
auto replacer = replacement.second;
auto parentsIt = parentsMap.find(toReplace);
if (parentsIt == parentsMap.end())
continue;
std::vector<BinaryTreeNode<T>*> parents = parentsIt->second;
for (auto parent : parents)
{
for (unsigned8 child = 0; child < 2; child++)
{
if (parent->GetChild(child) == toReplace)
parent->SetChild(replacer, child);
}
}
delete toReplace;
}
}
currentLayer = nextLayer;
}
mNodePool = dagNodePool;
}
std::vector<unsigned8> Serialize(bool onlyLeafsContainValues) const
{
// The first byte contains the number of bytes per pointer
unsigned8 pointerSize = GetSerializedPointerByteSize(onlyLeafsContainValues);
unsigned8 valueSize = GetMaterialByteSize();
std::vector<unsigned8> res(GetSerializedByteCount(onlyLeafsContainValues), 0);
res[0] = mDepth;
res[1] = pointerSize;
std::vector<BinaryTreeNode<T>*> nodePoolCopy(mNodePool.size());
std::copy(mNodePool.begin(), mNodePool.end(), nodePoolCopy.begin());
size_t firstLeafIndex = ~size_t(0);
if (onlyLeafsContainValues)
{
tbb::parallel_sort(nodePoolCopy.begin() + 1, nodePoolCopy.end(), [](BinaryTreeNode<T>* a, BinaryTreeNode<T>* b)
{
return !(a->IsLeaf()) && (b->IsLeaf());
});
for (size_t i = 0; i < nodePoolCopy.size(); i++)
{
BinaryTreeNode<T>* node = nodePoolCopy[i];
if (node->IsLeaf() && firstLeafIndex > i)
firstLeafIndex = i;
}
}
std::unordered_map<BinaryTreeNode<T>*, size_t> nodeIndices = CollectionHelper::GetIndexMap(nodePoolCopy);
for (size_t i = 0; i < nodePoolCopy.size(); i++)
{
BinaryTreeNode<T>* node = nodePoolCopy[i];
size_t nodePointer = GetNodePointer(i, pointerSize, valueSize, firstLeafIndex, onlyLeafsContainValues);
// Write the node pointers
for (unsigned8 child = 0; child < 2; child++)
{
BinaryTreeNode<T>* childNode = node->GetChild(child);
if (childNode != NULL)
{
assert(nodeIndices.find(childNode) != nodeIndices.end());
size_t childIndex = nodeIndices[childNode];
size_t pointer = GetNodePointer(childIndex, pointerSize, valueSize, firstLeafIndex, onlyLeafsContainValues);
BitHelper::SplitInBytesAndMove(pointer, res, nodePointer + pointerSize * child, pointerSize);
}
}
// Then write the node content/value
if (!onlyLeafsContainValues || node->IsLeaf())
{
std::vector<unsigned8> serializedValue = node->GetValue().Serialize();
std::move(serializedValue.begin(), serializedValue.end(), res.begin() + nodePointer + pointerSize * 2);
}
}
return res;
}
size_t GetNodeCount() const { return mNodePool.size(); }
size_t GetLeafNodeCount() const {
size_t leafNodeCount = 0;
for (auto node : mNodePool) if (node->IsLeaf()) leafNodeCount++;
return leafNodeCount;
}
static size_t GetSerializedByteCount(const size_t& nodeCount, const size_t& leafCount, const size_t& pointerSize, const size_t& valueSize, const bool& onlyLeafsContainValues)
{
return (onlyLeafsContainValues ? leafCount : nodeCount) * valueSize + (2 * pointerSize) * nodeCount;
}
size_t GetSerializedByteCount(bool onlyLeafsContainValues) const
{
return GetSerializedByteCount(GetNodeCount(), GetLeafNodeCount(), GetSerializedPointerByteSize(onlyLeafsContainValues), GetMaterialByteSize(), onlyLeafsContainValues);
}
unsigned8 GetSerializedNodeByteSize(bool onlyLeafsContainValues) const
{
return 2 * GetSerializedPointerByteSize(onlyLeafsContainValues) + GetMaterialByteSize();
}
unsigned8 GetMaterialByteSize() const
{
return sizeof(T);
}
unsigned8 GetSerializedPointerByteSize(bool onlyLeafsContainValues) const
{
// Count the number of leaf nodes:
size_t leafNodeCount = 0;
if (onlyLeafsContainValues)
leafNodeCount = GetLeafNodeCount();
bool fits = false;
unsigned8 pointerSize = 0;
while (!fits)
{
++pointerSize;
size_t requiredBytes = GetSerializedByteCount(GetNodeCount(), leafNodeCount, pointerSize, GetMaterialByteSize(), onlyLeafsContainValues);
fits = BitHelper::Exp2(8 * pointerSize) > requiredBytes;
}
return pointerSize;
}
};

View File

@@ -0,0 +1,223 @@
#pragma once
#include <vector>
#include <array>
#include "IndexIterator.h"
//#include "../BitHelper.h"
template <typename T, unsigned8 BLOCK_POINTER_BITS = 14>
class BlockVector
{
public:
const static unsigned64 BLOCK_SIZE = 1 << BLOCK_POINTER_BITS;
const static size_t BLOCK_SIZE_MASK = BLOCK_SIZE - 1;
protected:
typedef std::vector<T> block;
std::vector<block*> mData;
size_t mSize;
inline size_t block_count(size_t n) const { return (n >> BLOCK_POINTER_BITS) + ((n % BLOCK_SIZE == 0) ? 0 : 1); }
inline size_t block_index(size_t i) const { return i >> BLOCK_POINTER_BITS; }
inline size_t item_index(size_t i) const { return i & BLOCK_SIZE_MASK; }
void shrink_blocks(size_t newBlockCount)
{
// If the size is smaller, delete blocks that are no longer needed.
for (size_t i = newBlockCount; i < mData.size(); i++)
delete mData[i];
}
void init_blocks(size_t oldSize = 0)
{
for (size_t i = oldSize; i < mData.size(); i++)
mData[i] = new block(BLOCK_SIZE);
}
void init_blocks(const T& value, size_t oldSize)
{
for (size_t i = oldSize; i < mData.size(); i++)
mData[i] = new block(BLOCK_SIZE, value);
}
public:
typedef IndexIterator<const BlockVector<T>, const T> const_iterator;
typedef IndexIterator<BlockVector<T>, T> iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
BlockVector() : mData(std::vector<std::array<T, BLOCK_SIZE>*>()), mSize(0) {}
BlockVector(size_t capacity) :
mData(std::vector<block*>()),
mSize(0)
{
reserve(capacity);
}
BlockVector(const BlockVector& r)
{
mData = std::vector<block*>(r.mData.size());
init(0);
for (size_t block = 0; block < r.mData.size(); block++)
std::copy(r.mData[block]->begin(), r.mData[block]->end(), mData[block]->begin());
mSize = r.mSize;
}
BlockVector(BlockVector&& r)
{
mData = std::move(r.mData); r.mData.clear();
mSize = std::move(r.mSize); r.mSize = 0;
}
virtual ~BlockVector()
{
for (block* arr : mData)
{
arr->clear();
delete arr;
}
mData.clear();
}
// Capacity
size_t size() const { return mSize; }
size_t max_size() const { return mData.max_size() * mSize; }
void reserve(size_t n)
{
size_t newBlockCount = block_count(n);
if (mData.size() >= newBlockCount) return; // big enough
size_t oldSize = mData.size();
mData.resize(newBlockCount);
for (size_t i = oldSize; i < mData.size(); i++)
{
mData[i] = new block();
mData[i]->reserve(BLOCK_SIZE);
}
}
// Shrinks the vector so it contains n entries.
void shrink(size_t n)
{
size_t newBlockCount = block_count(n);
shrink_blocks(newBlockCount);
mData.resize(newBlockCount);
mSize = n;
}
void resize(size_t n)
{
size_t oldBlockCount = mData.size();
size_t newBlockCount = block_count(n);
shrink_blocks(newBlockCount);
mData.resize(newBlockCount, NULL);
init_blocks(oldBlockCount);
mSize = n;
}
void resize(size_t n, const T& val)
{
size_t oldBlockCount = mData.size();
size_t newBlockCount = block_count(n);
shrink_blocks(newBlockCount);
mData.resize(newBlockCount, NULL);
init_blocks(val, oldBlockCount);
mSize = n;
}
inline size_t capacity() const { return mData.size() * BLOCK_SIZE; }
inline bool empty() const { return mData.empty(); }
void shrink_to_fit() { resize(mSize); }
// Element access
const T& at(size_t i) const { assert(i < mSize); return mData[block_index(i)]->at(item_index(i)); }
T& at(size_t i) { assert(i < mSize); return mData[block_index(i)]->at(item_index(i)); }
const T& operator[](size_t i) const { return at(i); }
T& operator[](size_t i) { return at(i); }
const T& front() const { return at(0); }
T& front() { return at(0); }
const T& back() const { return at(mSize - 1); }
T& back() { return at(mSize - 1); }
// Modifiers
void push_back(const T& val)
{
// Increase the size if it doesn't fit
if (block_index(mSize) >= mData.size()) reserve(mSize + 1);
// Put the item in the last position
block* b = mData[block_index(mSize)];
size_t itemIndex = item_index(mSize);
if (b->size() == itemIndex) b->push_back(val);
else mData->at(itemIndex) = val;
mSize++;
}
void push_back(T&& val)
{
// Increase the size if it doesn't fit
if (block_index(mSize) >= mData.size()) reserve(mSize + 1);
// Put the item in the last position
block* b = mData[block_index(mSize)];
size_t itemIndex = item_index(mSize);
if (b->size() == itemIndex) b->push_back(val);
else b->at(itemIndex) = val;
mSize++;
}
template <class... Args>
void emplace_back(Args&&... args)
{
size_t blockIndex = block_index(mSize);
if (blockIndex >= mData.size()) reserve(mSize + 1);
block* b = mData[blockIndex];
size_t itemIndex = item_index(mSize);
if (b->size() == itemIndex) b->emplace_back(std::forward<Args>(args)...);
else b->at(itemIndex) = T(std::forward<Args>(args)...);
mSize++;
}
void pop_back() {
mSize--;
}
void clear() {
for (block* block : mData)
delete block;
mData.clear();
mSize = 0;
}
// Iterators
const_iterator begin() const
{
return const_iterator(this, 0);
}
const_iterator end() const
{
return const_iterator(this, mSize);
}
const_reverse_iterator rbegin() const
{
return const_reverse_iterator(end());
}
const_reverse_iterator rend() const
{
return const_reverse_iterator(begin());
}
iterator begin()
{
return iterator(this, 0);
}
iterator end()
{
return iterator(this, mSize);
}
reverse_iterator rbegin()
{
return reverse_iterator(end());
}
reverse_iterator rend()
{
return reverse_iterator(begin());
}
};

View File

@@ -0,0 +1,101 @@
#include "BoolArray.h"
#include "../BitHelper.h"
#include <assert.h>
BoolArray::BoolArray(size_t size, bool value) :
mData(std::vector<unsigned8>(BitHelper::RoundToBytes(size) / 8, value ? 255 : 0)),
mSize(size)
{}
BoolArray::~BoolArray() {}
void BoolArray::Set(const size_t& i, bool value)
{
if (i > mSize) Resize(i + 1);
size_t byteIndex = GetByteIndex(i);
unsigned8 bitIndex = GetBitIndex(i);
unsigned8 bitMask = BitHelper::GetHSSingleBitMask<unsigned8>(bitIndex);
mData[byteIndex] &= ~bitMask;
if (value) mData[byteIndex] |= bitMask;
}
void BoolArray::SetRange(const size_t& start, const size_t& end, bool value)
{
if (end < start) return;
if (end > mSize) Resize(end);
size_t startByteIndex = GetByteIndex(start);
size_t endByteIndex = GetByteIndex(end);
unsigned8 bitMask = BitHelper::GetHSMask<unsigned8>(GetBitIndex(start), 8);
if (startByteIndex == endByteIndex)
bitMask = BitHelper::GetHSMask<unsigned8>(GetBitIndex(start), GetBitIndex(end));
// Set the bits in the first block:
mData[startByteIndex] &= ~bitMask;
if (value) mData[startByteIndex] |= bitMask;
if (startByteIndex == endByteIndex) return; // We're done if only one byte is affected
// Set the bits in all bytes between the start and the end bytes
unsigned8 allSetValue = value ? 0xFF : 0x00;
for (size_t byte = startByteIndex + 1; byte < endByteIndex; byte++)
mData[byte] = allSetValue;
// Set the required bits in the end byte
if (end % 8 != 0)
{
bitMask = BitHelper::GetHSMask<unsigned8>(0, GetBitIndex(end));
mData[endByteIndex] &= ~bitMask;
if (value) mData[endByteIndex] |= bitMask;
}
}
bool BoolArray::Any(const size_t& start, size_t end) const
{
if (end >= mSize) end = mSize - 1;
if (end <= start) return false;
size_t startByteIndex = GetByteIndex(start);
size_t endByteIndex = GetByteIndex(end);
if (startByteIndex == endByteIndex)
return (BitHelper::GetHSMask<unsigned8>(GetBitIndex(start), GetBitIndex(end)) & mData[startByteIndex]) != 0;
// Check the first block
unsigned8 bitMask = BitHelper::GetHSMask<unsigned8>(GetBitIndex(start), 8);
if ((mData[startByteIndex] & bitMask) != 0) return true;
// Check the bytes inbetween
for (size_t byte = startByteIndex + 1; byte < endByteIndex; byte++)
if ((mData[byte] & 0xFF) != 0) return true;
// Check the last bits
return (mData[endByteIndex] & BitHelper::GetHSMask<unsigned8>(0, GetBitIndex(end))) != 0;
}
bool BoolArray::Get(const size_t& i) const
{
assert(i < mSize);
return BitHelper::GetHS(mData[GetByteIndex(i)], GetBitIndex(i));
}
void BoolArray::Resize(const size_t& size)
{
mSize = size;
mData.resize(BitHelper::RoundToBytes(size) / 8);
}
void BoolArray::Clear()
{
mSize = 0;
mData.clear();
mData.shrink_to_fit();
}
void BoolArray::ShrinkToFit()
{
mData.shrink_to_fit();
}
bool BoolArray::operator[](const size_t& i) const
{
return Get(i);
}

View File

@@ -0,0 +1,31 @@
#pragma once
#include "../Defines.h"
#include <vector>
#include <stddef.h>
class BoolArray
{
public:
BoolArray(size_t size, bool value = false);
BoolArray() : BoolArray(0) {}
~BoolArray();
void Set(const size_t& i, bool value);
bool Get(const size_t& i) const;
void SetRange(const size_t& start, const size_t& end, bool value);
bool Any(const size_t& start = 0, size_t end = ~size_t(0)) const;
size_t Size() const { return mSize; }
bool Empty() const { return mSize == 0; }
void Resize(const size_t& size);
void Clear();
void ShrinkToFit();
bool operator[](const size_t& i) const;
private:
static inline size_t GetByteIndex(const size_t& i) { return i >> 3; }
static inline unsigned8 GetBitIndex(const size_t& i) { return i & 0x7; }
size_t mSize;
std::vector<unsigned8> mData;
};

View File

@@ -0,0 +1,187 @@
#pragma once
#include <iterator>
template<typename ContainerT, typename T>
class IndexIterator : public std::iterator<std::random_access_iterator_tag, T>
{
protected:
size_t mIndex;
ContainerT* mContainer;
public:
typedef std::random_access_iterator_tag iterator_category;
typedef
typename iterator<std::random_access_iterator_tag, T>::value_type
value_type;
typedef
typename iterator<std::random_access_iterator_tag, T>::difference_type
difference_type;
typedef
typename iterator<std::random_access_iterator_tag, T>::reference
reference;
typedef
typename iterator<std::random_access_iterator_tag, T>::pointer
pointer;
IndexIterator() : mContainer(NULL), mIndex(0) {}
IndexIterator(ContainerT* container) : mContainer(container), mIndex(0) {}
IndexIterator(ContainerT* container, size_t index) : mContainer(container), mIndex(index) {}
IndexIterator(const IndexIterator<ContainerT, T>& r) : mContainer(r.mContainer), mIndex(r.mIndex) {}
IndexIterator& operator=(const IndexIterator& r)
{
mIndex = r.mIndex; mContainer = r.mContainer; return *this;
}
IndexIterator& operator++() // PREFIX
{
++mIndex; return *this;
}
IndexIterator& operator--() // PREFIX
{
--mIndex; return *this;
}
IndexIterator operator++(int) // POSTFIX
{
return IndexIterator(mContainer, mIndex++);
}
IndexIterator operator--(int) // POSTFIX
{
return IndexIterator(mContainer, mIndex--);
}
IndexIterator operator+(const difference_type& n) const
{
return IndexIterator(mContainer, mIndex + n);
}
IndexIterator& operator+=(const difference_type& n)
{
mIndex += n; return *this;
}
IndexIterator operator-(const difference_type& n) const
{
return IndexIterator(mContainer, mIndex - n);
}
IndexIterator& operator-=(const difference_type& n)
{
mIndex -= n; return *this;
}
reference operator*() const
{
return mContainer->operator[](mIndex);
}
pointer operator->() const
{
return &mContainer->operator[](mIndex);
}
reference operator[](const difference_type& n) const
{
return mContainer->operator[](mIndex + n);
}
template<typename ContainerTypeT, typename TypeT>
friend bool operator==(
const IndexIterator<ContainerTypeT, TypeT>& r1,
const IndexIterator<ContainerTypeT, TypeT>& r2);
template<typename ContainerTypeT, typename TypeT>
friend bool operator!=(
const IndexIterator<ContainerTypeT, TypeT>& r1,
const IndexIterator<ContainerTypeT, TypeT>& r2);
template<typename ContainerTypeT, typename TypeT>
friend bool operator<(
const IndexIterator<ContainerTypeT, TypeT>& r1,
const IndexIterator<ContainerTypeT, TypeT>& r2);
template<typename ContainerTypeT, typename TypeT>
friend bool operator>(
const IndexIterator<ContainerTypeT, TypeT>& r1,
const IndexIterator<ContainerTypeT, TypeT>& r2);
template<typename ContainerTypeT, typename TypeT>
friend bool operator<=(
const IndexIterator<ContainerTypeT, TypeT>& r1,
const IndexIterator<ContainerTypeT, TypeT>& r2);
template<typename ContainerTypeT, typename TypeT>
friend bool operator>=(
const IndexIterator<ContainerTypeT, TypeT>& r1,
const IndexIterator<ContainerTypeT, TypeT>& r2);
template<typename ContainerTypeT, typename TypeT>
friend typename IndexIterator<ContainerTypeT, TypeT>::difference_type operator+(
const IndexIterator<ContainerTypeT, TypeT>& r1,
const IndexIterator<ContainerTypeT, TypeT>& r2);
template<typename ContainerTypeT, typename TypeT>
friend typename IndexIterator<ContainerTypeT, TypeT>::difference_type operator-(
const IndexIterator<ContainerTypeT, TypeT>& r1,
const IndexIterator<ContainerTypeT, TypeT>& r2);
};
template<typename ContainerT, typename T>
bool operator==(const IndexIterator<ContainerT, T>& r1, const IndexIterator<ContainerT, T>& r2)
{
return (r1.mIndex == r2.mIndex && r1.mContainer == r2.mContainer);
}
template<typename ContainerT, typename T>
bool operator!=(const IndexIterator<ContainerT, T>& r1, const IndexIterator<ContainerT, T>& r2)
{
return ((r1.mIndex != r2.mIndex) || (r1.mContainer != r2.mContainer));
}
template<typename ContainerT, typename T>
bool operator<(const IndexIterator<ContainerT, T>& r1, const IndexIterator<ContainerT, T>& r2)
{
if (r1.mContainer != r2.mContainer) return r1.mContainer < r2.mContainer;
return (r1.mIndex < r2.mIndex);
}
template<typename ContainerT, typename T>
bool operator>(const IndexIterator<ContainerT, T>& r1, const IndexIterator<ContainerT, T>& r2)
{
if (r1.mContainer != r2.mContainer) return r1.mContainer > r2.mContainer;
return (r1.mIndex > r2.mIndex);
}
template<typename ContainerT, typename T>
bool operator<=(const IndexIterator<ContainerT, T>& r1, const IndexIterator<ContainerT, T>& r2)
{
if (r1.mContainer != r2.mContainer) return r1.mContainer < r2.mContainer;
return (r1.mIndex <= r2.mIndex);
}
template<typename ContainerT, typename T>
bool operator>=(const IndexIterator<ContainerT, T>& r1, const IndexIterator<ContainerT, T>& r2)
{
if (r1.mContainer != r2.mContainer) return r1.mContainer > r2.mContainer;
return (r1.mIndex >= r2.mIndex);
}
template<typename ContainerT, typename T>
typename IndexIterator<ContainerT, T>::difference_type operator+(
const IndexIterator<ContainerT, T>& r1,
const IndexIterator<ContainerT, T>& r2)
{
assert(r1.mContainer == r2.mContainer);
return r1.mIndex + r2.mIndex;
}
template<typename ContainerT, typename T>
typename IndexIterator<ContainerT, T>::difference_type operator-(
const IndexIterator<ContainerT, T>& r1, const IndexIterator<ContainerT, T>& r2)
{
assert(r1.mContainer == r2.mContainer);
return r1.mIndex - r2.mIndex;
}

View File

@@ -0,0 +1,131 @@
#pragma once
#include <vector>
#include <stack>
#include <algorithm>
#include "../../inc/tbb/parallel_sort.h"
#include "BoolArray.h"
#include "BlockVector.h"
#include "../CollectionHelper.h"
#define USE_BLOCK_VECTOR
// Class for memory efficiency: stores all objects of some type in a vector. Pointers to the object can then be requested.
template<typename T>
class ObjectPool
{
private:
#ifdef USE_BLOCK_VECTOR
BlockVector<T> mData;
#else
std::vector<T> mData;
#endif
BoolArray mMarkedForDeletion;
const size_t mBaseCapacity = 0;
bool AnyMarkedForDeletion() const { return !mMarkedForDeletion.Empty(); }
bool MarkedForDeletion(size_t index) const { return index < mMarkedForDeletion.Size() && mMarkedForDeletion[index]; }
void MarkForDeletion(size_t index)
{
if (index >= mMarkedForDeletion.Size())
mMarkedForDeletion.Resize(index + 1);
mMarkedForDeletion.Set(index, true);
}
public:
ObjectPool(size_t initialCapacity = 1) :
#ifdef USE_BLOCK_VECTOR
mData(BlockVector<T>(initialCapacity)),
#else
mData(std::vector<T>()),
#endif
mMarkedForDeletion(BoolArray()),
mBaseCapacity(initialCapacity)
{
#ifndef USE_BLOCK_VECTOR
mData.reserve(initialCapacity);
#endif
}
// Adds a new item to the pool.
template <class... Args>
T* Create(Args&&... args)
{
//// If any nodes are marked for deletion, reuse their position
//if (!mMarkedForDeletion.empty())
//{
// T* res = &mData[mMarkedForDeletion.top()];
// mMarkedForDeletion.pop();
// return res;
//}
//else // Else, resize the data array to create some space for this new node
//{
mData.emplace_back(std::forward<Args>(args)...);
return &mData[mData.size() - 1];
//}
}
// Moves the node from the given memory position into this pool. Returns the new pointer to this node
T* Add(T* value)
{
mData.emplace_back(std::move(*value));
return &mData[mData.size() - 1];
}
void Delete(size_t i) { MarkForDeletion(i); }
// Removes all nodes that are marked for deletion.
void Clean()
{
// There is only stuff to clean if there are nodes marked for deletion
if (!AnyMarkedForDeletion()) return;
size_t newIdx = 0;
for (size_t oldIdx = 0; oldIdx < mData.size(); oldIdx++)
// If this node should not be deleted, move it to the new position.
if (!MarkedForDeletion(oldIdx))
{
if (oldIdx != newIdx)
mData[newIdx] = std::move(mData[oldIdx]);
//std::swap(mData[newIdx], mData[oldIdx]);
newIdx++;
}
#ifdef USE_BLOCK_VECTOR
mData.shrink(newIdx);
mData.reserve(mBaseCapacity);
#else
mData.erase(mData.begin() + newIdx, mData.end());
mData.shrink_to_fit();
mData.reserve(mBaseCapacity);
#endif
mMarkedForDeletion = BoolArray();
}
void Clear()
{
mData.clear();
mMarkedForDeletion.Clear();
}
template<typename Comparer = std::less<T>>
void Sort(size_t startIdx, size_t endIdx, const Comparer& comparer = Comparer())
{
// Check if any node are deleted in the range that needs to be sorted:
if (AnyMarkedForDeletion() && mMarkedForDeletion.Any(startIdx, endIdx))
Clean();
tbb::parallel_sort(mData.begin() + startIdx, mData.begin() + endIdx, comparer);
}
inline size_t Size() const { return mData.size(); }
inline const T* operator[](size_t i) const
{
if (MarkedForDeletion(i)) return NULL;
return &mData.at(i);
}
inline T* operator[](size_t i)
{
if (MarkedForDeletion(i)) return NULL;
return &mData.at(i);
}
};

119
Research/core/Util/Path.h Normal file
View File

@@ -0,0 +1,119 @@
#pragma once
#include <string>
#include <vector>
#include <fstream>
#include <algorithm>
#include "../Defines.h"
#include "../Serializer.h"
// Path stores a recording detailing any type.
// Interpolator should be a functor with a method specification:
// T operator()(const T& a, const T& b, double time)
// Where a and b should be interpolated between, and time is a value between 0 and 1, indicating the interpolation value
template<typename T, typename Interpolator>
class Path
{
private:
std::vector<T> mFrames;
std::vector<double> mFrameTimes;
public:
Path() : mFrames(std::vector<T>()), mFrameTimes(std::vector<double>()) {}
~Path() {}
void SetStateAtTime(const double& time, const T& state)
{
// Find the position of this new state:
auto pos = std::lower_bound(mFrameTimes.begin(), mFrameTimes.end(), time);
size_t idx = pos - mFrameTimes.begin();
mFrames.insert(mFrames.begin() + idx, state);
mFrameTimes.insert(pos, time);
}
T GetStateAtTime(const double& time) const
{
// Find the frames between which the requested time takes place
size_t afterIdx = std::upper_bound(mFrameTimes.begin(), mFrameTimes.end(), time) - mFrameTimes.begin();
size_t beforeIdx = afterIdx - 1;
if (afterIdx == mFrameTimes.size()) // End of the recording, return the last camera state
return mFrames.back();
if (afterIdx == 0)
return mFrames.front();
// Now linearly interpolate the frames:
double t = ((time - mFrameTimes[beforeIdx]) / (mFrameTimes[afterIdx] - mFrameTimes[beforeIdx]));
const T& before = mFrames[beforeIdx];
const T& after = mFrames[afterIdx];
return Interpolator()(before, after, t);
}
double GetLength() const {
if (Empty()) return 0;
return mFrameTimes.back() - mFrameTimes.front();
}
size_t Size() const { return mFrames.size(); }
/// Removes the camera path node at index i
void RemoveAt(size_t i)
{
mFrames.erase(mFrames.begin() + i);
mFrameTimes.erase(mFrames.begin() + i);
}
/// Removes the last stored camera path node
void RemoveLast()
{
mFrames.pop_back();
mFrameTimes.pop_back();
}
// Makes sure the frametimes go from 0 to the length of the recording
void Normalize()
{
if (Empty()) return;
double offset = mFrameTimes[0];
for (size_t i = 0; i < mFrameTimes.size(); i++)
mFrameTimes[i] = mFrameTimes[i] - offset;
}
bool Empty() const { return mFrames.empty(); }
void Clear()
{
mFrames.clear();
mFrameTimes.clear();
}
void WriteToFile(const std::string& filename)
{
std::ofstream file(filename, std::ios::binary);
unsigned32 recordingLength = (unsigned32)mFrames.size();
Serializer<unsigned32>::Serialize(recordingLength, file);
if (recordingLength > 0)
{
Serializer<T*>::Serialize(&mFrames[0], mFrames.size(), file);
Serializer<double*>::Serialize(&mFrameTimes[0], mFrames.size(), file);
}
file.close();
}
bool ReadFromFile(const std::string& filename)
{
std::ifstream file(filename, std::ios::binary);
if (file.good()) {
unsigned32 recordingLength = 0;
Serializer<unsigned32>::Deserialize(recordingLength, file);
mFrames.resize(recordingLength);
mFrameTimes.resize(recordingLength);
if (recordingLength > 0)
{
Serializer<T*>::Deserialize(&mFrames[0], mFrames.size(), file);
Serializer<double*>::Deserialize(&mFrameTimes[0], mFrames.size(), file);
}
file.close();
return true;
}
return false;
}
};

View File

@@ -0,0 +1,64 @@
#pragma once
#pragma warning(disable:4996)
#include "../Defines.h"
#include <algorithm>
#include <vector>
// Wrapper for standard C array that attempts to minimize memory usage. The user of this class should keep track of the size of the array to correctly be able to insert etc.
template<typename T>
class SmallDynamicArray
{
public:
SmallDynamicArray() : mData(NULL) {}
SmallDynamicArray(size_t size) : mData(new T[size]) {}
SmallDynamicArray(SmallDynamicArray&& source) // Move ctor
{
mData = source.mData;
source.mData = NULL;
}
~SmallDynamicArray() { if (mData != NULL) delete[] mData; }
SmallDynamicArray& operator=(SmallDynamicArray&& source) // Move assignment operator
{
mData = source.mData;
source.mData = NULL;
return *this;
}
inline void Set(const size_t& i, T value) { mData[i] = value; }
inline T& Get(const size_t& i) const { return mData[i]; }
inline T& operator[](const size_t& i) const { return mData[i]; }
inline void SetRange(const T* source, size_t begin, size_t end) { std::copy(source + begin, source + end, mData); }
void Clear() { delete[] mData; mData = NULL; }
inline bool IsEmpty() const { return mData == NULL; }
void Resize(size_t oldSize, const size_t& newSize)
{
T* newData = new T[newSize];
if (!IsEmpty())
{
std::copy(mData, mData + std::min(oldSize, newSize), newData);
delete[] mData;
}
mData = newData;
}
void Insert(size_t index, const T& value, size_t curSize)
{
unsigned* newData = new unsigned[curSize + 1];
// Move the data over to a new array with the correct size
if (mData != NULL)
{
std::copy(mData, mData + index, newData);
std::copy(mData + index, mData + curSize, newData + index + 1);
delete[] mData;
}
newData[index] = value;
mData = newData;
}
private:
T* mData;
};

View File

@@ -0,0 +1,20 @@
#include "Stopwatch.h"
Stopwatch::Stopwatch()
{
Reset();
}
Stopwatch::~Stopwatch()
{
}
void Stopwatch::Reset()
{
begin = clock();
}
double Stopwatch::GetTime()
{
return double(clock() - begin) / CLOCKS_PER_SEC;
}

View File

@@ -0,0 +1,17 @@
#pragma once
#include <ctime>
class Stopwatch
{
public:
Stopwatch();
~Stopwatch();
void Reset();
// Returns the time in seconds
double GetTime();
private:
clock_t begin;
};

View File

@@ -0,0 +1,71 @@
#pragma once
#include "../Defines.h"
#include <vector>
#include <algorithm>
#include "../MathHelper.h"
template<typename T>
class TransferFunction
{
public:
struct Node
{
unsigned32 value;
float opacity;
T material;
Node(unsigned32 value, float opacity, T mat) : value(value), opacity(opacity), material(mat) {}
Node(unsigned32 value) : value(value), opacity(0), material(T()) {}
};
struct NodeCompare { bool operator()(const Node& a, const Node& b) { return a.value < b.value; } };
TransferFunction()
{
}
~TransferFunction() { mFunction.clear(); }
void AddNode(unsigned32 value, float opacity, T mat)
{
Node node(value, opacity, mat);
auto pos = LowerBound(node);
if (pos != mFunction.end() && pos->value == value)
mFunction[pos - mFunction.begin()] = node;
else
mFunction.insert(pos, node);
}
template<typename Interpolator>
void Evaluate(unsigned32 value, float& outOpacity, T& outMat, Interpolator interpolator) const
{
Node node(value);
// Set default values
outOpacity = 1.f;
outMat = T();
// Find the current node
auto pos = LowerBound(node);
if (pos == mFunction.end()) return;
Node after = *pos;
if (pos == mFunction.begin())
{
outOpacity = after.opacity;
outMat = after.material;
return;
}
pos--;
Node before = *pos;
float t = float(value - before.value) / float(after.value - before.value);
outMat = interpolator(before.material, after.material, t);
outOpacity = MathHelper::lerp(t, before.opacity, after.opacity);
}
private:
typename std::vector<Node>::const_iterator LowerBound(const Node& node) const
{
return std::lower_bound(mFunction.begin(), mFunction.end(), node, NodeCompare());
}
std::vector<Node> mFunction;
};