Initial commit: Final state of the master project

This commit is contained in:
2017-09-16 09:41:37 +02:00
commit 696180d43b
832 changed files with 169717 additions and 0 deletions

View File

@@ -0,0 +1,106 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_associated_min_max
/// @file glm/gtx/associated_min_max.hpp
/// @date 2008-03-10 / 2011-06-07
/// @author Christophe Riccio
///
/// @see core (dependence)
/// @see gtx_extented_min_max (dependence)
///
/// @defgroup gtx_associated_min_max GLM_GTX_associated_min_max
/// @ingroup gtx
///
/// @brief Min and max functions that return associated values not the compared onces.
/// <glm/gtx/associated_min_max.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTX_associated_min_max
#define GLM_GTX_associated_min_max
// Dependency:
#include "../glm.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTX_associated_min_max extension included")
#endif
namespace glm
{
/// @addtogroup gtx_associated_min_max
/// @{
/// Min comparison between 2 variables
/// @see gtx_associated_min_max
template<typename genTypeT, typename genTypeU>
GLM_FUNC_DECL genTypeU associatedMin(
const genTypeT& x, const genTypeU& a,
const genTypeT& y, const genTypeU& b);
/// Min comparison between 3 variables
/// @see gtx_associated_min_max
template<typename genTypeT, typename genTypeU>
GLM_FUNC_DECL genTypeU associatedMin(
const genTypeT& x, const genTypeU& a,
const genTypeT& y, const genTypeU& b,
const genTypeT& z, const genTypeU& c);
/// Min comparison between 4 variables
/// @see gtx_associated_min_max
template<typename genTypeT, typename genTypeU>
GLM_FUNC_DECL genTypeU associatedMin(
const genTypeT& x, const genTypeU& a,
const genTypeT& y, const genTypeU& b,
const genTypeT& z, const genTypeU& c,
const genTypeT& w, const genTypeU& d);
/// Max comparison between 2 variables
/// @see gtx_associated_min_max
template<typename genTypeT, typename genTypeU>
GLM_FUNC_DECL genTypeU associatedMax(
const genTypeT& x, const genTypeU& a,
const genTypeT& y, const genTypeU& b);
/// Max comparison between 3 variables
/// @see gtx_associated_min_max
template<typename genTypeT, typename genTypeU>
GLM_FUNC_DECL genTypeU associatedMax(
const genTypeT& x, const genTypeU& a,
const genTypeT& y, const genTypeU& b,
const genTypeT& z, const genTypeU& c);
/// Max comparison between 4 variables
/// @see gtx_associated_min_max
template<typename genTypeT, typename genTypeU>
GLM_FUNC_DECL genTypeU associatedMax(
const genTypeT& x, const genTypeU& a,
const genTypeT& y, const genTypeU& b,
const genTypeT& z, const genTypeU& c,
const genTypeT& w, const genTypeU& d);
/// @}
} //namespace glm
#include "associated_min_max.inl"
#endif//GLM_GTX_associated_min_max

View File

@@ -0,0 +1,912 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2008-03-10
// Updated : 2008-03-15
// Licence : This source is under MIT License
// File : gtx_associated_min_max.inl
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace glm{
// Min comparison between 2 variables
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER U associatedMin(T x, U a, T y, U b)
{
return x < y ? a : b;
}
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER detail::tvec2<U, P> associatedMin
(
const detail::tvec2<T, P>& x, const detail::tvec2<U, P>& a,
const detail::tvec2<T, P>& y, const detail::tvec2<U, P>& b
)
{
detail::tvec2<U, P> Result;
//Result.x = x[0] < y[0] ? a[0] : b[0];
//Result.y = x[1] < y[1] ? a[1] : b[1];
for(typename detail::tvec2<U, P>::size_type i = 0; i < Result.length(); ++i)
Result[i] = x[i] < y[i] ? a[i] : b[i];
return Result;
}
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<U, P> associatedMin
(
const detail::tvec3<T, P>& x, const detail::tvec3<U, P>& a,
const detail::tvec3<T, P>& y, const detail::tvec3<U, P>& b
)
{
detail::tvec3<U, P> Result;
for(typename detail::tvec3<U, P>::size_type i = 0; i < Result.length(); ++i)
Result[i] = x[i] < y[i] ? a[i] : b[i];
return Result;
}
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER detail::tvec4<U, P> associatedMin
(
const detail::tvec4<T, P>& x, const detail::tvec4<U, P>& a,
const detail::tvec4<T, P>& y, const detail::tvec4<U, P>& b
)
{
detail::tvec4<U, P> Result;
for(typename detail::tvec4<U, P>::size_type i = 0; i < Result.length(); ++i)
Result[i] = x[i] < y[i] ? a[i] : b[i];
return Result;
}
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER detail::tvec2<U, P> associatedMin
(
T x, const detail::tvec2<U, P>& a,
T y, const detail::tvec2<U, P>& b
)
{
detail::tvec2<U, P> Result;
for(typename detail::tvec2<U, P>::size_type i = 0; i < Result.length(); ++i)
Result[i] = x < y ? a[i] : b[i];
return Result;
}
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<U, P> associatedMin
(
T x, const detail::tvec3<U, P>& a,
T y, const detail::tvec3<U, P>& b
)
{
detail::tvec3<U, P> Result;
for(typename detail::tvec3<U, P>::size_type i = 0; i < Result.length(); ++i)
Result[i] = x < y ? a[i] : b[i];
return Result;
}
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER detail::tvec4<U, P> associatedMin
(
T x, const detail::tvec4<U, P>& a,
T y, const detail::tvec4<U, P>& b
)
{
detail::tvec4<U, P> Result;
for(typename detail::tvec4<U, P>::size_type i = 0; i < Result.length(); ++i)
Result[i] = x < y ? a[i] : b[i];
return Result;
}
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER detail::tvec2<U, P> associatedMin
(
detail::tvec2<T, P> const & x, U a,
detail::tvec2<T, P> const & y, U b
)
{
detail::tvec2<U, P> Result;
for(typename detail::tvec2<U, P>::size_type i = 0; i < Result.length(); ++i)
Result[i] = x[i] < y[i] ? a : b;
return Result;
}
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<U, P> associatedMin
(
const detail::tvec3<T, P>& x, U a,
const detail::tvec3<T, P>& y, U b
)
{
detail::tvec3<U, P> Result;
for(typename detail::tvec3<U, P>::size_type i = 0; i < Result.length(); ++i)
Result[i] = x[i] < y[i] ? a : b;
return Result;
}
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER detail::tvec4<U, P> associatedMin
(
const detail::tvec4<T, P>& x, U a,
const detail::tvec4<T, P>& y, U b
)
{
detail::tvec4<U, P> Result;
for(typename detail::tvec4<U, P>::size_type i = 0; i < Result.length(); ++i)
Result[i] = x[i] < y[i] ? a : b;
return Result;
}
// Min comparison between 3 variables
template<typename T, typename U>
GLM_FUNC_QUALIFIER U associatedMin
(
T x, U a,
T y, U b,
T z, U c
)
{
U Result = x < y ? (x < z ? a : c) : (y < z ? b : c);
return Result;
}
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER detail::tvec2<U, P> associatedMin
(
const detail::tvec2<T, P>& x, const detail::tvec2<U, P>& a,
const detail::tvec2<T, P>& y, const detail::tvec2<U, P>& b,
const detail::tvec2<T, P>& z, const detail::tvec2<U, P>& c
)
{
detail::tvec2<U, P> Result;
for(typename detail::tvec2<U, P>::size_type i = 0; i < Result.length(); ++i)
Result[i] = x[i] < y[i] ? (x[i] < z[i] ? a[i] : c[i]) : (y[i] < z[i] ? b[i] : c[i]);
return Result;
}
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<U, P> associatedMin
(
const detail::tvec3<T, P>& x, const detail::tvec3<U, P>& a,
const detail::tvec3<T, P>& y, const detail::tvec3<U, P>& b,
const detail::tvec3<T, P>& z, const detail::tvec3<U, P>& c
)
{
detail::tvec3<U, P> Result;
for(typename detail::tvec3<U, P>::size_type i = 0; i < Result.length(); ++i)
Result[i] = x[i] < y[i] ? (x[i] < z[i] ? a[i] : c[i]) : (y[i] < z[i] ? b[i] : c[i]);
return Result;
}
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER detail::tvec4<U, P> associatedMin
(
const detail::tvec4<T, P>& x, const detail::tvec4<U, P>& a,
const detail::tvec4<T, P>& y, const detail::tvec4<U, P>& b,
const detail::tvec4<T, P>& z, const detail::tvec4<U, P>& c
)
{
detail::tvec4<U, P> Result;
for(typename detail::tvec4<U, P>::size_type i = 0; i < Result.length(); ++i)
Result[i] = x[i] < y[i] ? (x[i] < z[i] ? a[i] : c[i]) : (y[i] < z[i] ? b[i] : c[i]);
return Result;
}
// Min comparison between 4 variables
template<typename T, typename U>
GLM_FUNC_QUALIFIER U associatedMin
(
T x, U a,
T y, U b,
T z, U c,
T w, U d
)
{
T Test1 = min(x, y);
T Test2 = min(z, w);;
U Result1 = x < y ? a : b;
U Result2 = z < w ? c : d;
U Result = Test1 < Test2 ? Result1 : Result2;
return Result;
}
// Min comparison between 4 variables
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER detail::tvec2<U, P> associatedMin
(
const detail::tvec2<T, P>& x, const detail::tvec2<U, P>& a,
const detail::tvec2<T, P>& y, const detail::tvec2<U, P>& b,
const detail::tvec2<T, P>& z, const detail::tvec2<U, P>& c,
const detail::tvec2<T, P>& w, const detail::tvec2<U, P>& d
)
{
detail::tvec2<U, P> Result;
for(typename detail::tvec2<U, P>::size_type i = 0; i < Result.length(); ++i)
{
T Test1 = min(x[i], y[i]);
T Test2 = min(z[i], w[i]);
U Result1 = x[i] < y[i] ? a[i] : b[i];
U Result2 = z[i] < w[i] ? c[i] : d[i];
Result[i] = Test1 < Test2 ? Result1 : Result2;
}
return Result;
}
// Min comparison between 4 variables
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<U, P> associatedMin
(
const detail::tvec3<T, P>& x, const detail::tvec3<U, P>& a,
const detail::tvec3<T, P>& y, const detail::tvec3<U, P>& b,
const detail::tvec3<T, P>& z, const detail::tvec3<U, P>& c,
const detail::tvec3<T, P>& w, const detail::tvec3<U, P>& d
)
{
detail::tvec3<U, P> Result;
for(typename detail::tvec3<U, P>::size_type i = 0; i < Result.length(); ++i)
{
T Test1 = min(x[i], y[i]);
T Test2 = min(z[i], w[i]);
U Result1 = x[i] < y[i] ? a[i] : b[i];
U Result2 = z[i] < w[i] ? c[i] : d[i];
Result[i] = Test1 < Test2 ? Result1 : Result2;
}
return Result;
}
// Min comparison between 4 variables
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER detail::tvec4<U, P> associatedMin
(
const detail::tvec4<T, P>& x, const detail::tvec4<U, P>& a,
const detail::tvec4<T, P>& y, const detail::tvec4<U, P>& b,
const detail::tvec4<T, P>& z, const detail::tvec4<U, P>& c,
const detail::tvec4<T, P>& w, const detail::tvec4<U, P>& d
)
{
detail::tvec4<U, P> Result;
for(typename detail::tvec4<U, P>::size_type i = 0; i < Result.length(); ++i)
{
T Test1 = min(x[i], y[i]);
T Test2 = min(z[i], w[i]);
U Result1 = x[i] < y[i] ? a[i] : b[i];
U Result2 = z[i] < w[i] ? c[i] : d[i];
Result[i] = Test1 < Test2 ? Result1 : Result2;
}
return Result;
}
// Min comparison between 4 variables
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER detail::tvec2<U, P> associatedMin
(
T x, const detail::tvec2<U, P>& a,
T y, const detail::tvec2<U, P>& b,
T z, const detail::tvec2<U, P>& c,
T w, const detail::tvec2<U, P>& d
)
{
T Test1 = min(x, y);
T Test2 = min(z, w);
detail::tvec2<U, P> Result;
for(typename detail::tvec2<U, P>::size_type i = 0; i < Result.length(); ++i)
{
U Result1 = x < y ? a[i] : b[i];
U Result2 = z < w ? c[i] : d[i];
Result[i] = Test1 < Test2 ? Result1 : Result2;
}
return Result;
}
// Min comparison between 4 variables
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<U, P> associatedMin
(
T x, const detail::tvec3<U, P>& a,
T y, const detail::tvec3<U, P>& b,
T z, const detail::tvec3<U, P>& c,
T w, const detail::tvec3<U, P>& d
)
{
T Test1 = min(x, y);
T Test2 = min(z, w);
detail::tvec3<U, P> Result;
for(typename detail::tvec3<U, P>::size_type i = 0; i < detail::tvec3<U, P>::value_size; ++i)
{
U Result1 = x < y ? a[i] : b[i];
U Result2 = z < w ? c[i] : d[i];
Result[i] = Test1 < Test2 ? Result1 : Result2;
}
return Result;
}
// Min comparison between 4 variables
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER detail::tvec4<U, P> associatedMin
(
T x, const detail::tvec4<U, P>& a,
T y, const detail::tvec4<U, P>& b,
T z, const detail::tvec4<U, P>& c,
T w, const detail::tvec4<U, P>& d
)
{
T Test1 = min(x, y);
T Test2 = min(z, w);
detail::tvec4<U, P> Result;
for(typename detail::tvec4<U, P>::size_type i = 0; i < detail::tvec4<U, P>::value_size; ++i)
{
U Result1 = x < y ? a[i] : b[i];
U Result2 = z < w ? c[i] : d[i];
Result[i] = Test1 < Test2 ? Result1 : Result2;
}
return Result;
}
// Min comparison between 4 variables
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER detail::tvec2<U, P> associatedMin
(
const detail::tvec2<T, P>& x, U a,
const detail::tvec2<T, P>& y, U b,
const detail::tvec2<T, P>& z, U c,
const detail::tvec2<T, P>& w, U d
)
{
detail::tvec2<U, P> Result;
for(typename detail::tvec2<T, P>::size_type i = 0; i < detail::tvec2<T, P>::value_size(); ++i)
{
T Test1 = min(x[i], y[i]);
T Test2 = min(z[i], w[i]);;
U Result1 = x[i] < y[i] ? a : b;
U Result2 = z[i] < w[i] ? c : d;
Result[i] = Test1 < Test2 ? Result1 : Result2;
}
return Result;
}
// Min comparison between 4 variables
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<U, P> associatedMin
(
const detail::tvec3<T, P>& x, U a,
const detail::tvec3<T, P>& y, U b,
const detail::tvec3<T, P>& z, U c,
const detail::tvec3<T, P>& w, U d
)
{
detail::tvec3<U, P> Result;
for(typename detail::tvec3<T, P>::size_type i = 0; i < detail::tvec3<T, P>::value_size(); ++i)
{
T Test1 = min(x[i], y[i]);
T Test2 = min(z[i], w[i]);;
U Result1 = x[i] < y[i] ? a : b;
U Result2 = z[i] < w[i] ? c : d;
Result[i] = Test1 < Test2 ? Result1 : Result2;
}
return Result;
}
// Min comparison between 4 variables
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER detail::tvec4<U, P> associatedMin
(
const detail::tvec4<T, P>& x, U a,
const detail::tvec4<T, P>& y, U b,
const detail::tvec4<T, P>& z, U c,
const detail::tvec4<T, P>& w, U d
)
{
detail::tvec4<U, P> Result;
for(typename detail::tvec4<T, P>::size_type i = 0; i < detail::tvec4<T, P>::value_size(); ++i)
{
T Test1 = min(x[i], y[i]);
T Test2 = min(z[i], w[i]);;
U Result1 = x[i] < y[i] ? a : b;
U Result2 = z[i] < w[i] ? c : d;
Result[i] = Test1 < Test2 ? Result1 : Result2;
}
return Result;
}
// Max comparison between 2 variables
template<typename T, typename U>
GLM_FUNC_QUALIFIER U associatedMax(T x, U a, T y, U b)
{
return x > y ? a : b;
}
// Max comparison between 2 variables
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER detail::tvec2<U, P> associatedMax
(
const detail::tvec2<T, P>& x, const detail::tvec2<U, P>& a,
const detail::tvec2<T, P>& y, const detail::tvec2<U, P>& b
)
{
detail::tvec2<U, P> Result;
for(typename detail::tvec2<U, P>::size_type i = 0; i < Result.length(); ++i)
Result[i] = x[i] > y[i] ? a[i] : b[i];
return Result;
}
// Max comparison between 2 variables
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<U, P> associatedMax
(
const detail::tvec3<T, P>& x, const detail::tvec3<U, P>& a,
const detail::tvec3<T, P>& y, const detail::tvec3<U, P>& b
)
{
detail::tvec3<U, P> Result;
for(typename detail::tvec3<U, P>::size_type i = 0; i < Result.length(); ++i)
Result[i] = x[i] > y[i] ? a[i] : b[i];
return Result;
}
// Max comparison between 2 variables
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER detail::tvec4<U, P> associatedMax
(
const detail::tvec4<T, P>& x, const detail::tvec4<U, P>& a,
const detail::tvec4<T, P>& y, const detail::tvec4<U, P>& b
)
{
detail::tvec4<U, P> Result;
for(typename detail::tvec4<U, P>::size_type i = 0; i < Result.length(); ++i)
Result[i] = x[i] > y[i] ? a[i] : b[i];
return Result;
}
// Max comparison between 2 variables
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER detail::tvec2<U, P> associatedMax
(
T x, const detail::tvec2<U, P>& a,
T y, const detail::tvec2<U, P>& b
)
{
detail::tvec2<U, P> Result;
for(typename detail::tvec2<U, P>::size_type i = 0; i < Result.length(); ++i)
Result[i] = x > y ? a[i] : b[i];
return Result;
}
// Max comparison between 2 variables
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<U, P> associatedMax
(
T x, const detail::tvec3<U, P>& a,
T y, const detail::tvec3<U, P>& b
)
{
detail::tvec3<U, P> Result;
for(typename detail::tvec3<U, P>::size_type i = 0; i < Result.length(); ++i)
Result[i] = x > y ? a[i] : b[i];
return Result;
}
// Max comparison between 2 variables
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER detail::tvec4<U, P> associatedMax
(
T x, const detail::tvec4<U, P>& a,
T y, const detail::tvec4<U, P>& b
)
{
detail::tvec4<U, P> Result;
for(typename detail::tvec4<U, P>::size_type i = 0; i < Result.length(); ++i)
Result[i] = x > y ? a[i] : b[i];
return Result;
}
// Max comparison between 2 variables
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER detail::tvec2<U, P> associatedMax
(
const detail::tvec2<T, P>& x, U a,
const detail::tvec2<T, P>& y, U b
)
{
detail::tvec2<U, P> Result;
for(typename detail::tvec2<T, P>::size_type i = 0; i < Result.length(); ++i)
Result[i] = x[i] > y[i] ? a : b;
return Result;
}
// Max comparison between 2 variables
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<U, P> associatedMax
(
const detail::tvec3<T, P>& x, U a,
const detail::tvec3<T, P>& y, U b
)
{
detail::tvec3<U, P> Result;
for(typename detail::tvec3<T, P>::size_type i = 0; i < Result.length(); ++i)
Result[i] = x[i] > y[i] ? a : b;
return Result;
}
// Max comparison between 2 variables
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER detail::tvec4<U, P> associatedMax
(
const detail::tvec4<T, P>& x, U a,
const detail::tvec4<T, P>& y, U b
)
{
detail::tvec4<U, P> Result;
for(typename detail::tvec4<T, P>::size_type i = 0; i < Result.length(); ++i)
Result[i] = x[i] > y[i] ? a : b;
return Result;
}
// Max comparison between 3 variables
template<typename T, typename U>
GLM_FUNC_QUALIFIER U associatedMax
(
T x, U a,
T y, U b,
T z, U c
)
{
U Result = x > y ? (x > z ? a : c) : (y > z ? b : c);
return Result;
}
// Max comparison between 3 variables
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER detail::tvec2<U, P> associatedMax
(
const detail::tvec2<T, P>& x, const detail::tvec2<U, P>& a,
const detail::tvec2<T, P>& y, const detail::tvec2<U, P>& b,
const detail::tvec2<T, P>& z, const detail::tvec2<U, P>& c
)
{
detail::tvec2<U, P> Result;
for(typename detail::tvec2<U, P>::size_type i = 0; i < Result.length(); ++i)
Result[i] = x[i] > y[i] ? (x[i] > z[i] ? a[i] : c[i]) : (y[i] > z[i] ? b[i] : c[i]);
return Result;
}
// Max comparison between 3 variables
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<U, P> associatedMax
(
const detail::tvec3<T, P>& x, const detail::tvec3<U, P>& a,
const detail::tvec3<T, P>& y, const detail::tvec3<U, P>& b,
const detail::tvec3<T, P>& z, const detail::tvec3<U, P>& c
)
{
detail::tvec3<U, P> Result;
for(typename detail::tvec3<U, P>::size_type i = 0; i < Result.length(); ++i)
Result[i] = x[i] > y[i] ? (x[i] > z[i] ? a[i] : c[i]) : (y[i] > z[i] ? b[i] : c[i]);
return Result;
}
// Max comparison between 3 variables
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER detail::tvec4<U, P> associatedMax
(
const detail::tvec4<T, P>& x, const detail::tvec4<U, P>& a,
const detail::tvec4<T, P>& y, const detail::tvec4<U, P>& b,
const detail::tvec4<T, P>& z, const detail::tvec4<U, P>& c
)
{
detail::tvec4<U, P> Result;
for(typename detail::tvec4<U, P>::size_type i = 0; i < Result.length(); ++i)
Result[i] = x[i] > y[i] ? (x[i] > z[i] ? a[i] : c[i]) : (y[i] > z[i] ? b[i] : c[i]);
return Result;
}
// Max comparison between 3 variables
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER detail::tvec2<U, P> associatedMax
(
T x, const detail::tvec2<U, P>& a,
T y, const detail::tvec2<U, P>& b,
T z, const detail::tvec2<U, P>& c
)
{
detail::tvec2<U, P> Result;
for(typename detail::tvec2<U, P>::size_type i = 0; i < Result.length(); ++i)
Result[i] = x > y ? (x > z ? a[i] : c[i]) : (y > z ? b[i] : c[i]);
return Result;
}
// Max comparison between 3 variables
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<U, P> associatedMax
(
T x, const detail::tvec3<U, P>& a,
T y, const detail::tvec3<U, P>& b,
T z, const detail::tvec3<U, P>& c
)
{
detail::tvec3<U, P> Result;
for(typename detail::tvec3<U, P>::size_type i = 0; i < Result.length(); ++i)
Result[i] = x > y ? (x > z ? a[i] : c[i]) : (y > z ? b[i] : c[i]);
return Result;
}
// Max comparison between 3 variables
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER detail::tvec4<U, P> associatedMax
(
T x, const detail::tvec4<U, P>& a,
T y, const detail::tvec4<U, P>& b,
T z, const detail::tvec4<U, P>& c
)
{
detail::tvec4<U, P> Result;
for(typename detail::tvec4<U, P>::size_type i = 0; i < Result.length(); ++i)
Result[i] = x > y ? (x > z ? a[i] : c[i]) : (y > z ? b[i] : c[i]);
return Result;
}
// Max comparison between 3 variables
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER detail::tvec2<U, P> associatedMax
(
const detail::tvec2<T, P>& x, U a,
const detail::tvec2<T, P>& y, U b,
const detail::tvec2<T, P>& z, U c
)
{
detail::tvec2<U, P> Result;
for(typename detail::tvec2<T, P>::size_type i = 0; i < Result.length(); ++i)
Result[i] = x[i] > y[i] ? (x[i] > z[i] ? a : c) : (y[i] > z[i] ? b : c);
return Result;
}
// Max comparison between 3 variables
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<U, P> associatedMax
(
const detail::tvec3<T, P>& x, U a,
const detail::tvec3<T, P>& y, U b,
const detail::tvec3<T, P>& z, U c
)
{
detail::tvec3<U, P> Result;
for(typename detail::tvec3<T, P>::size_type i = 0; i < Result.length(); ++i)
Result[i] = x[i] > y[i] ? (x[i] > z[i] ? a : c) : (y[i] > z[i] ? b : c);
return Result;
}
// Max comparison between 3 variables
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER detail::tvec4<U, P> associatedMax
(
const detail::tvec4<T, P>& x, U a,
const detail::tvec4<T, P>& y, U b,
const detail::tvec4<T, P>& z, U c
)
{
detail::tvec4<U, P> Result;
for(typename detail::tvec4<T, P>::size_type i = 0; i < Result.length(); ++i)
Result[i] = x[i] > y[i] ? (x[i] > z[i] ? a : c) : (y[i] > z[i] ? b : c);
return Result;
}
// Max comparison between 4 variables
template<typename T, typename U>
GLM_FUNC_QUALIFIER U associatedMax
(
T x, U a,
T y, U b,
T z, U c,
T w, U d
)
{
T Test1 = max(x, y);
T Test2 = max(z, w);;
U Result1 = x > y ? a : b;
U Result2 = z > w ? c : d;
U Result = Test1 > Test2 ? Result1 : Result2;
return Result;
}
// Max comparison between 4 variables
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER detail::tvec2<U, P> associatedMax
(
const detail::tvec2<T, P>& x, const detail::tvec2<U, P>& a,
const detail::tvec2<T, P>& y, const detail::tvec2<U, P>& b,
const detail::tvec2<T, P>& z, const detail::tvec2<U, P>& c,
const detail::tvec2<T, P>& w, const detail::tvec2<U, P>& d
)
{
detail::tvec2<U, P> Result;
for(typename detail::tvec2<U, P>::size_type i = 0; i < Result.length(); ++i)
{
T Test1 = max(x[i], y[i]);
T Test2 = max(z[i], w[i]);
U Result1 = x[i] > y[i] ? a[i] : b[i];
U Result2 = z[i] > w[i] ? c[i] : d[i];
Result[i] = Test1 > Test2 ? Result1 : Result2;
}
return Result;
}
// Max comparison between 4 variables
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<U, P> associatedMax
(
const detail::tvec3<T, P>& x, const detail::tvec3<U, P>& a,
const detail::tvec3<T, P>& y, const detail::tvec3<U, P>& b,
const detail::tvec3<T, P>& z, const detail::tvec3<U, P>& c,
const detail::tvec3<T, P>& w, const detail::tvec3<U, P>& d
)
{
detail::tvec3<U, P> Result;
for(typename detail::tvec3<U, P>::size_type i = 0; i < Result.length(); ++i)
{
T Test1 = max(x[i], y[i]);
T Test2 = max(z[i], w[i]);
U Result1 = x[i] > y[i] ? a[i] : b[i];
U Result2 = z[i] > w[i] ? c[i] : d[i];
Result[i] = Test1 > Test2 ? Result1 : Result2;
}
return Result;
}
// Max comparison between 4 variables
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER detail::tvec4<U, P> associatedMax
(
const detail::tvec4<T, P>& x, const detail::tvec4<U, P>& a,
const detail::tvec4<T, P>& y, const detail::tvec4<U, P>& b,
const detail::tvec4<T, P>& z, const detail::tvec4<U, P>& c,
const detail::tvec4<T, P>& w, const detail::tvec4<U, P>& d
)
{
detail::tvec4<U, P> Result;
for(typename detail::tvec4<U, P>::size_type i = 0; i < Result.length(); ++i)
{
T Test1 = max(x[i], y[i]);
T Test2 = max(z[i], w[i]);
U Result1 = x[i] > y[i] ? a[i] : b[i];
U Result2 = z[i] > w[i] ? c[i] : d[i];
Result[i] = Test1 > Test2 ? Result1 : Result2;
}
return Result;
}
// Max comparison between 4 variables
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER detail::tvec2<U, P> associatedMax
(
T x, const detail::tvec2<U, P>& a,
T y, const detail::tvec2<U, P>& b,
T z, const detail::tvec2<U, P>& c,
T w, const detail::tvec2<U, P>& d
)
{
T Test1 = max(x, y);
T Test2 = max(z, w);
detail::tvec2<U, P> Result;
for(typename detail::tvec2<U, P>::size_type i = 0; i < Result.length(); ++i)
{
U Result1 = x > y ? a[i] : b[i];
U Result2 = z > w ? c[i] : d[i];
Result[i] = Test1 > Test2 ? Result1 : Result2;
}
return Result;
}
// Max comparison between 4 variables
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<U, P> associatedMax
(
T x, const detail::tvec3<U, P>& a,
T y, const detail::tvec3<U, P>& b,
T z, const detail::tvec3<U, P>& c,
T w, const detail::tvec3<U, P>& d
)
{
T Test1 = max(x, y);
T Test2 = max(z, w);
detail::tvec3<U, P> Result;
for(typename detail::tvec3<U, P>::size_type i = 0; i < Result.length(); ++i)
{
U Result1 = x > y ? a[i] : b[i];
U Result2 = z > w ? c[i] : d[i];
Result[i] = Test1 > Test2 ? Result1 : Result2;
}
return Result;
}
// Max comparison between 4 variables
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER detail::tvec4<U, P> associatedMax
(
T x, const detail::tvec4<U, P>& a,
T y, const detail::tvec4<U, P>& b,
T z, const detail::tvec4<U, P>& c,
T w, const detail::tvec4<U, P>& d
)
{
T Test1 = max(x, y);
T Test2 = max(z, w);
detail::tvec4<U, P> Result;
for(typename detail::tvec4<U, P>::size_type i = 0; i < Result.length(); ++i)
{
U Result1 = x > y ? a[i] : b[i];
U Result2 = z > w ? c[i] : d[i];
Result[i] = Test1 > Test2 ? Result1 : Result2;
}
return Result;
}
// Max comparison between 4 variables
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER detail::tvec2<U, P> associatedMax
(
const detail::tvec2<T, P>& x, U a,
const detail::tvec2<T, P>& y, U b,
const detail::tvec2<T, P>& z, U c,
const detail::tvec2<T, P>& w, U d
)
{
detail::tvec2<U, P> Result;
for(typename detail::tvec2<T, P>::size_type i = 0; i < Result.length(); ++i)
{
T Test1 = max(x[i], y[i]);
T Test2 = max(z[i], w[i]);;
U Result1 = x[i] > y[i] ? a : b;
U Result2 = z[i] > w[i] ? c : d;
Result[i] = Test1 > Test2 ? Result1 : Result2;
}
return Result;
}
// Max comparison between 4 variables
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<U, P> associatedMax
(
const detail::tvec3<T, P>& x, U a,
const detail::tvec3<T, P>& y, U b,
const detail::tvec3<T, P>& z, U c,
const detail::tvec3<T, P>& w, U d
)
{
detail::tvec3<U, P> Result;
for(typename detail::tvec3<T, P>::size_type i = 0; i < Result.length(); ++i)
{
T Test1 = max(x[i], y[i]);
T Test2 = max(z[i], w[i]);;
U Result1 = x[i] > y[i] ? a : b;
U Result2 = z[i] > w[i] ? c : d;
Result[i] = Test1 > Test2 ? Result1 : Result2;
}
return Result;
}
// Max comparison between 4 variables
template<typename T, typename U, precision P>
GLM_FUNC_QUALIFIER detail::tvec4<U, P> associatedMax
(
const detail::tvec4<T, P>& x, U a,
const detail::tvec4<T, P>& y, U b,
const detail::tvec4<T, P>& z, U c,
const detail::tvec4<T, P>& w, U d
)
{
detail::tvec4<U, P> Result;
for(typename detail::tvec4<T, P>::size_type i = 0; i < Result.length(); ++i)
{
T Test1 = max(x[i], y[i]);
T Test2 = max(z[i], w[i]);;
U Result1 = x[i] > y[i] ? a : b;
U Result2 = z[i] > w[i] ? c : d;
Result[i] = Test1 > Test2 ? Result1 : Result2;
}
return Result;
}
}//namespace glm

View File

@@ -0,0 +1,234 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_bit
/// @file glm/gtx/bit.hpp
/// @date 2007-03-14 / 2011-06-07
/// @author Christophe Riccio
///
/// @see core (dependence)
/// @see gtc_half_float (dependence)
///
/// @defgroup gtx_bit GLM_GTX_bit
/// @ingroup gtx
///
/// @brief Allow to perform bit operations on integer values
///
/// <glm/gtx/bit.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTX_bit
#define GLM_GTX_bit
// Dependencies
#include "../detail/type_int.hpp"
#include "../detail/setup.hpp"
#include <cstddef>
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTX_bit extension included")
#endif
namespace glm
{
/// @addtogroup gtx_bit
/// @{
/// Build a mask of 'count' bits
/// @see gtx_bit
template <typename genIType>
GLM_FUNC_DECL genIType mask(genIType const & count);
//! Find the highest bit set to 1 in a integer variable and return its value.
/// @see gtx_bit
template <typename genType>
GLM_FUNC_DECL genType highestBitValue(genType const & value);
//! Return true if the value is a power of two number.
/// @see gtx_bit
template <typename genType>
GLM_FUNC_DECL bool isPowerOfTwo(genType const & value);
//! Return the power of two number which value is just higher the input value.
/// @see gtx_bit
template <typename genType>
GLM_FUNC_DECL genType powerOfTwoAbove(genType const & value);
//! Return the power of two number which value is just lower the input value.
/// @see gtx_bit
template <typename genType>
GLM_FUNC_DECL genType powerOfTwoBelow(genType const & value);
//! Return the power of two number which value is the closet to the input value.
/// @see gtx_bit
template <typename genType>
GLM_FUNC_DECL genType powerOfTwoNearest(genType const & value);
//! Revert all bits of any integer based type.
/// @see gtx_bit
template <typename genType>
GLM_DEPRECATED GLM_FUNC_DECL genType bitRevert(genType const & value);
//! Rotate all bits to the right.
/// @see gtx_bit
template <typename genType>
GLM_FUNC_DECL genType bitRotateRight(genType const & In, std::size_t Shift);
//! Rotate all bits to the left.
/// @see gtx_bit
template <typename genType>
GLM_FUNC_DECL genType bitRotateLeft(genType const & In, std::size_t Shift);
//! Set to 1 a range of bits.
/// @see gtx_bit
template <typename genIUType>
GLM_FUNC_DECL genIUType fillBitfieldWithOne(
genIUType const & Value,
int const & FromBit,
int const & ToBit);
//! Set to 0 a range of bits.
/// @see gtx_bit
template <typename genIUType>
GLM_FUNC_DECL genIUType fillBitfieldWithZero(
genIUType const & Value,
int const & FromBit,
int const & ToBit);
/// Interleaves the bits of x and y.
/// The first bit is the first bit of x followed by the first bit of y.
/// The other bits are interleaved following the previous sequence.
///
/// @see gtx_bit
GLM_FUNC_DECL int16 bitfieldInterleave(int8 x, int8 y);
/// Interleaves the bits of x and y.
/// The first bit is the first bit of x followed by the first bit of y.
/// The other bits are interleaved following the previous sequence.
///
/// @see gtx_bit
GLM_FUNC_DECL uint16 bitfieldInterleave(uint8 x, uint8 y);
/// Interleaves the bits of x and y.
/// The first bit is the first bit of x followed by the first bit of y.
/// The other bits are interleaved following the previous sequence.
///
/// @see gtx_bit
GLM_FUNC_DECL int32 bitfieldInterleave(int16 x, int16 y);
/// Interleaves the bits of x and y.
/// The first bit is the first bit of x followed by the first bit of y.
/// The other bits are interleaved following the previous sequence.
///
/// @see gtx_bit
GLM_FUNC_DECL uint32 bitfieldInterleave(uint16 x, uint16 y);
/// Interleaves the bits of x and y.
/// The first bit is the first bit of x followed by the first bit of y.
/// The other bits are interleaved following the previous sequence.
///
/// @see gtx_bit
GLM_FUNC_DECL int64 bitfieldInterleave(int32 x, int32 y);
/// Interleaves the bits of x and y.
/// The first bit is the first bit of x followed by the first bit of y.
/// The other bits are interleaved following the previous sequence.
///
/// @see gtx_bit
GLM_FUNC_DECL uint64 bitfieldInterleave(uint32 x, uint32 y);
/// Interleaves the bits of x, y and z.
/// The first bit is the first bit of x followed by the first bit of y and the first bit of z.
/// The other bits are interleaved following the previous sequence.
///
/// @see gtx_bit
GLM_FUNC_DECL int32 bitfieldInterleave(int8 x, int8 y, int8 z);
/// Interleaves the bits of x, y and z.
/// The first bit is the first bit of x followed by the first bit of y and the first bit of z.
/// The other bits are interleaved following the previous sequence.
///
/// @see gtx_bit
GLM_FUNC_DECL uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z);
/// Interleaves the bits of x, y and z.
/// The first bit is the first bit of x followed by the first bit of y and the first bit of z.
/// The other bits are interleaved following the previous sequence.
///
/// @see gtx_bit
GLM_FUNC_DECL int64 bitfieldInterleave(int16 x, int16 y, int16 z);
/// Interleaves the bits of x, y and z.
/// The first bit is the first bit of x followed by the first bit of y and the first bit of z.
/// The other bits are interleaved following the previous sequence.
///
/// @see gtx_bit
GLM_FUNC_DECL uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z);
/// Interleaves the bits of x, y and z.
/// The first bit is the first bit of x followed by the first bit of y and the first bit of z.
/// The other bits are interleaved following the previous sequence.
///
/// @see gtx_bit
GLM_FUNC_DECL int64 bitfieldInterleave(int32 x, int32 y, int32 z);
/// Interleaves the bits of x, y and z.
/// The first bit is the first bit of x followed by the first bit of y and the first bit of z.
/// The other bits are interleaved following the previous sequence.
///
/// @see gtx_bit
GLM_FUNC_DECL uint64 bitfieldInterleave(uint32 x, uint32 y, uint32 z);
/// Interleaves the bits of x, y, z and w.
/// The first bit is the first bit of x followed by the first bit of y, the first bit of z and finally the first bit of w.
/// The other bits are interleaved following the previous sequence.
///
/// @see gtx_bit
GLM_FUNC_DECL int32 bitfieldInterleave(int8 x, int8 y, int8 z, int8 w);
/// Interleaves the bits of x, y, z and w.
/// The first bit is the first bit of x followed by the first bit of y, the first bit of z and finally the first bit of w.
/// The other bits are interleaved following the previous sequence.
///
/// @see gtx_bit
GLM_FUNC_DECL uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z, uint8 w);
/// Interleaves the bits of x, y, z and w.
/// The first bit is the first bit of x followed by the first bit of y, the first bit of z and finally the first bit of w.
/// The other bits are interleaved following the previous sequence.
///
/// @see gtx_bit
GLM_FUNC_DECL int64 bitfieldInterleave(int16 x, int16 y, int16 z, int16 w);
/// Interleaves the bits of x, y, z and w.
/// The first bit is the first bit of x followed by the first bit of y, the first bit of z and finally the first bit of w.
/// The other bits are interleaved following the previous sequence.
///
/// @see gtx_bit
GLM_FUNC_DECL uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z, uint16 w);
/// @}
} //namespace glm
#include "bit.inl"
#endif//GLM_GTX_bit

View File

@@ -0,0 +1,782 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2007-03-14
// Updated : 2013-12-25
// Licence : This source is under MIT License
// File : glm/gtx/bit.inl
///////////////////////////////////////////////////////////////////////////////////////////////////
#include "../detail/_vectorize.hpp"
#include <limits>
namespace glm
{
template <typename genIType>
GLM_FUNC_QUALIFIER genIType mask
(
genIType const & count
)
{
return ((genIType(1) << (count)) - genIType(1));
}
VECTORIZE_VEC(mask)
// highestBitValue
template <typename genType>
GLM_FUNC_QUALIFIER genType highestBitValue
(
genType const & value
)
{
genType tmp = value;
genType result = genType(0);
while(tmp)
{
result = (tmp & (~tmp + 1)); // grab lowest bit
tmp &= ~result; // clear lowest bit
}
return result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec2<int, P> highestBitValue
(
detail::tvec2<T, P> const & value
)
{
return detail::tvec2<int, P>(
highestBitValue(value[0]),
highestBitValue(value[1]));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<int, P> highestBitValue
(
detail::tvec3<T, P> const & value
)
{
return detail::tvec3<int, P>(
highestBitValue(value[0]),
highestBitValue(value[1]),
highestBitValue(value[2]));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec4<int, P> highestBitValue
(
detail::tvec4<T, P> const & value
)
{
return detail::tvec4<int, P>(
highestBitValue(value[0]),
highestBitValue(value[1]),
highestBitValue(value[2]),
highestBitValue(value[3]));
}
// isPowerOfTwo
template <typename genType>
GLM_FUNC_QUALIFIER bool isPowerOfTwo(genType const & Value)
{
//detail::If<std::numeric_limits<genType>::is_signed>::apply(abs, Value);
//return !(Value & (Value - 1));
// For old complier?
genType Result = Value;
if(std::numeric_limits<genType>::is_signed)
Result = abs(Result);
return !(Result & (Result - 1));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec2<bool, P> isPowerOfTwo
(
detail::tvec2<T, P> const & value
)
{
return detail::tvec2<bool, P>(
isPowerOfTwo(value[0]),
isPowerOfTwo(value[1]));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<bool, P> isPowerOfTwo
(
detail::tvec3<T, P> const & value
)
{
return detail::tvec3<bool, P>(
isPowerOfTwo(value[0]),
isPowerOfTwo(value[1]),
isPowerOfTwo(value[2]));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec4<bool, P> isPowerOfTwo
(
detail::tvec4<T, P> const & value
)
{
return detail::tvec4<bool, P>(
isPowerOfTwo(value[0]),
isPowerOfTwo(value[1]),
isPowerOfTwo(value[2]),
isPowerOfTwo(value[3]));
}
// powerOfTwoAbove
template <typename genType>
GLM_FUNC_QUALIFIER genType powerOfTwoAbove(genType const & value)
{
return isPowerOfTwo(value) ? value : highestBitValue(value) << 1;
}
VECTORIZE_VEC(powerOfTwoAbove)
// powerOfTwoBelow
template <typename genType>
GLM_FUNC_QUALIFIER genType powerOfTwoBelow
(
genType const & value
)
{
return isPowerOfTwo(value) ? value : highestBitValue(value);
}
VECTORIZE_VEC(powerOfTwoBelow)
// powerOfTwoNearest
template <typename genType>
GLM_FUNC_QUALIFIER genType powerOfTwoNearest
(
genType const & value
)
{
if(isPowerOfTwo(value))
return value;
genType prev = highestBitValue(value);
genType next = prev << 1;
return (next - value) < (value - prev) ? next : prev;
}
VECTORIZE_VEC(powerOfTwoNearest)
template <typename genType>
GLM_FUNC_QUALIFIER genType bitRevert(genType const & In)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_integer, "'bitRevert' only accept integer values");
genType Out = 0;
std::size_t BitSize = sizeof(genType) * 8;
for(std::size_t i = 0; i < BitSize; ++i)
if(In & (genType(1) << i))
Out |= genType(1) << (BitSize - 1 - i);
return Out;
}
VECTORIZE_VEC(bitRevert)
template <typename genType>
GLM_FUNC_QUALIFIER genType bitRotateRight(genType const & In, std::size_t Shift)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_integer, "'bitRotateRight' only accept integer values");
std::size_t BitSize = sizeof(genType) * 8;
return (In << Shift) | (In >> (BitSize - Shift));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec2<T, P> bitRotateRight
(
detail::tvec2<T, P> const & Value,
std::size_t Shift
)
{
return detail::tvec2<T, P>(
bitRotateRight(Value[0], Shift),
bitRotateRight(Value[1], Shift));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<T, P> bitRotateRight
(
detail::tvec3<T, P> const & Value,
std::size_t Shift
)
{
return detail::tvec3<T, P>(
bitRotateRight(Value[0], Shift),
bitRotateRight(Value[1], Shift),
bitRotateRight(Value[2], Shift));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec4<T, P> bitRotateRight
(
detail::tvec4<T, P> const & Value,
std::size_t Shift
)
{
return detail::tvec4<T, P>(
bitRotateRight(Value[0], Shift),
bitRotateRight(Value[1], Shift),
bitRotateRight(Value[2], Shift),
bitRotateRight(Value[3], Shift));
}
template <typename genType>
GLM_FUNC_QUALIFIER genType bitRotateLeft(genType const & In, std::size_t Shift)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_integer, "'bitRotateLeft' only accept integer values");
std::size_t BitSize = sizeof(genType) * 8;
return (In >> Shift) | (In << (BitSize - Shift));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec2<T, P> bitRotateLeft
(
detail::tvec2<T, P> const & Value,
std::size_t Shift
)
{
return detail::tvec2<T, P>(
bitRotateLeft(Value[0], Shift),
bitRotateLeft(Value[1], Shift));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<T, P> bitRotateLeft
(
detail::tvec3<T, P> const & Value,
std::size_t Shift
)
{
return detail::tvec3<T, P>(
bitRotateLeft(Value[0], Shift),
bitRotateLeft(Value[1], Shift),
bitRotateLeft(Value[2], Shift));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec4<T, P> bitRotateLeft
(
detail::tvec4<T, P> const & Value,
std::size_t Shift
)
{
return detail::tvec4<T, P>(
bitRotateLeft(Value[0], Shift),
bitRotateLeft(Value[1], Shift),
bitRotateLeft(Value[2], Shift),
bitRotateLeft(Value[3], Shift));
}
template <typename genIUType>
GLM_FUNC_QUALIFIER genIUType fillBitfieldWithOne
(
genIUType const & Value,
int const & FromBit,
int const & ToBit
)
{
assert(FromBit <= ToBit);
assert(ToBit <= sizeof(genIUType) * std::size_t(8));
genIUType Result = Value;
for(signed i = 0; i <= ToBit; ++i)
Result |= (1 << i);
return Result;
}
template <typename genIUType>
GLM_FUNC_QUALIFIER genIUType fillBitfieldWithZero
(
genIUType const & Value,
int const & FromBit,
int const & ToBit
)
{
assert(FromBit <= ToBit);
assert(ToBit <= sizeof(genIUType) * std::size_t(8));
genIUType Result = Value;
for(signed i = 0; i <= ToBit; ++i)
Result &= ~(1 << i);
return Result;
}
namespace detail
{
template <typename PARAM, typename RET>
GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y);
template <typename PARAM, typename RET>
GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y, PARAM z);
template <typename PARAM, typename RET>
GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y, PARAM z, PARAM w);
/*
template <typename PARAM, typename RET>
inline RET bitfieldInterleave(PARAM x, PARAM y)
{
RET Result = 0;
for (int i = 0; i < sizeof(PARAM) * 8; i++)
Result |= (x & 1U << i) << i | (y & 1U << i) << (i + 1);
return Result;
}
template <typename PARAM, typename RET>
inline RET bitfieldInterleave(PARAM x, PARAM y, PARAM z)
{
RET Result = 0;
for (RET i = 0; i < sizeof(PARAM) * 8; i++)
{
Result |= ((RET(x) & (RET(1) << i)) << ((i << 1) + 0));
Result |= ((RET(y) & (RET(1) << i)) << ((i << 1) + 1));
Result |= ((RET(z) & (RET(1) << i)) << ((i << 1) + 2));
}
return Result;
}
template <typename PARAM, typename RET>
inline RET bitfieldInterleave(PARAM x, PARAM y, PARAM z, PARAM w)
{
RET Result = 0;
for (int i = 0; i < sizeof(PARAM) * 8; i++)
{
Result |= ((((RET(x) >> i) & RET(1))) << RET((i << 2) + 0));
Result |= ((((RET(y) >> i) & RET(1))) << RET((i << 2) + 1));
Result |= ((((RET(z) >> i) & RET(1))) << RET((i << 2) + 2));
Result |= ((((RET(w) >> i) & RET(1))) << RET((i << 2) + 3));
}
return Result;
}
*/
template <>
GLM_FUNC_QUALIFIER glm::uint16 bitfieldInterleave(glm::uint8 x, glm::uint8 y)
{
glm::uint16 REG1(x);
glm::uint16 REG2(y);
REG1 = ((REG1 << 4) | REG1) & glm::uint16(0x0F0F);
REG2 = ((REG2 << 4) | REG2) & glm::uint16(0x0F0F);
REG1 = ((REG1 << 2) | REG1) & glm::uint16(0x3333);
REG2 = ((REG2 << 2) | REG2) & glm::uint16(0x3333);
REG1 = ((REG1 << 1) | REG1) & glm::uint16(0x5555);
REG2 = ((REG2 << 1) | REG2) & glm::uint16(0x5555);
return REG1 | (REG2 << 1);
}
template <>
GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint16 x, glm::uint16 y)
{
glm::uint32 REG1(x);
glm::uint32 REG2(y);
REG1 = ((REG1 << 8) | REG1) & glm::uint32(0x00FF00FF);
REG2 = ((REG2 << 8) | REG2) & glm::uint32(0x00FF00FF);
REG1 = ((REG1 << 4) | REG1) & glm::uint32(0x0F0F0F0F);
REG2 = ((REG2 << 4) | REG2) & glm::uint32(0x0F0F0F0F);
REG1 = ((REG1 << 2) | REG1) & glm::uint32(0x33333333);
REG2 = ((REG2 << 2) | REG2) & glm::uint32(0x33333333);
REG1 = ((REG1 << 1) | REG1) & glm::uint32(0x55555555);
REG2 = ((REG2 << 1) | REG2) & glm::uint32(0x55555555);
return REG1 | (REG2 << 1);
}
template <>
GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint32 x, glm::uint32 y)
{
glm::uint64 REG1(x);
glm::uint64 REG2(y);
REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF);
REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF);
REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF);
REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF);
REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F);
REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F);
REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333);
REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333);
REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555);
REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555);
return REG1 | (REG2 << 1);
}
template <>
GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint8 x, glm::uint8 y, glm::uint8 z)
{
glm::uint32 REG1(x);
glm::uint32 REG2(y);
glm::uint32 REG3(z);
REG1 = ((REG1 << 16) | REG1) & glm::uint32(0x00FF0000FF0000FF);
REG2 = ((REG2 << 16) | REG2) & glm::uint32(0x00FF0000FF0000FF);
REG3 = ((REG3 << 16) | REG3) & glm::uint32(0x00FF0000FF0000FF);
REG1 = ((REG1 << 8) | REG1) & glm::uint32(0xF00F00F00F00F00F);
REG2 = ((REG2 << 8) | REG2) & glm::uint32(0xF00F00F00F00F00F);
REG3 = ((REG3 << 8) | REG3) & glm::uint32(0xF00F00F00F00F00F);
REG1 = ((REG1 << 4) | REG1) & glm::uint32(0x30C30C30C30C30C3);
REG2 = ((REG2 << 4) | REG2) & glm::uint32(0x30C30C30C30C30C3);
REG3 = ((REG3 << 4) | REG3) & glm::uint32(0x30C30C30C30C30C3);
REG1 = ((REG1 << 2) | REG1) & glm::uint32(0x9249249249249249);
REG2 = ((REG2 << 2) | REG2) & glm::uint32(0x9249249249249249);
REG3 = ((REG3 << 2) | REG3) & glm::uint32(0x9249249249249249);
return REG1 | (REG2 << 1) | (REG3 << 2);
}
template <>
GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint16 x, glm::uint16 y, glm::uint16 z)
{
glm::uint64 REG1(x);
glm::uint64 REG2(y);
glm::uint64 REG3(z);
REG1 = ((REG1 << 32) | REG1) & glm::uint64(0xFFFF00000000FFFF);
REG2 = ((REG2 << 32) | REG2) & glm::uint64(0xFFFF00000000FFFF);
REG3 = ((REG3 << 32) | REG3) & glm::uint64(0xFFFF00000000FFFF);
REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x00FF0000FF0000FF);
REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x00FF0000FF0000FF);
REG3 = ((REG3 << 16) | REG3) & glm::uint64(0x00FF0000FF0000FF);
REG1 = ((REG1 << 8) | REG1) & glm::uint64(0xF00F00F00F00F00F);
REG2 = ((REG2 << 8) | REG2) & glm::uint64(0xF00F00F00F00F00F);
REG3 = ((REG3 << 8) | REG3) & glm::uint64(0xF00F00F00F00F00F);
REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x30C30C30C30C30C3);
REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x30C30C30C30C30C3);
REG3 = ((REG3 << 4) | REG3) & glm::uint64(0x30C30C30C30C30C3);
REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x9249249249249249);
REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x9249249249249249);
REG3 = ((REG3 << 2) | REG3) & glm::uint64(0x9249249249249249);
return REG1 | (REG2 << 1) | (REG3 << 2);
}
template <>
GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint32 x, glm::uint32 y, glm::uint32 z)
{
glm::uint64 REG1(x);
glm::uint64 REG2(y);
glm::uint64 REG3(z);
REG1 = ((REG1 << 32) | REG1) & glm::uint64(0xFFFF00000000FFFF);
REG2 = ((REG2 << 32) | REG2) & glm::uint64(0xFFFF00000000FFFF);
REG3 = ((REG3 << 32) | REG3) & glm::uint64(0xFFFF00000000FFFF);
REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x00FF0000FF0000FF);
REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x00FF0000FF0000FF);
REG3 = ((REG3 << 16) | REG3) & glm::uint64(0x00FF0000FF0000FF);
REG1 = ((REG1 << 8) | REG1) & glm::uint64(0xF00F00F00F00F00F);
REG2 = ((REG2 << 8) | REG2) & glm::uint64(0xF00F00F00F00F00F);
REG3 = ((REG3 << 8) | REG3) & glm::uint64(0xF00F00F00F00F00F);
REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x30C30C30C30C30C3);
REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x30C30C30C30C30C3);
REG3 = ((REG3 << 4) | REG3) & glm::uint64(0x30C30C30C30C30C3);
REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x9249249249249249);
REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x9249249249249249);
REG3 = ((REG3 << 2) | REG3) & glm::uint64(0x9249249249249249);
return REG1 | (REG2 << 1) | (REG3 << 2);
}
template <>
GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint8 x, glm::uint8 y, glm::uint8 z, glm::uint8 w)
{
glm::uint32 REG1(x);
glm::uint32 REG2(y);
glm::uint32 REG3(z);
glm::uint32 REG4(w);
REG1 = ((REG1 << 12) | REG1) & glm::uint32(0x000F000F000F000F);
REG2 = ((REG2 << 12) | REG2) & glm::uint32(0x000F000F000F000F);
REG3 = ((REG3 << 12) | REG3) & glm::uint32(0x000F000F000F000F);
REG4 = ((REG4 << 12) | REG4) & glm::uint32(0x000F000F000F000F);
REG1 = ((REG1 << 6) | REG1) & glm::uint32(0x0303030303030303);
REG2 = ((REG2 << 6) | REG2) & glm::uint32(0x0303030303030303);
REG3 = ((REG3 << 6) | REG3) & glm::uint32(0x0303030303030303);
REG4 = ((REG4 << 6) | REG4) & glm::uint32(0x0303030303030303);
REG1 = ((REG1 << 3) | REG1) & glm::uint32(0x1111111111111111);
REG2 = ((REG2 << 3) | REG2) & glm::uint32(0x1111111111111111);
REG3 = ((REG3 << 3) | REG3) & glm::uint32(0x1111111111111111);
REG4 = ((REG4 << 3) | REG4) & glm::uint32(0x1111111111111111);
return REG1 | (REG2 << 1) | (REG3 << 2) | (REG4 << 3);
}
template <>
GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint16 x, glm::uint16 y, glm::uint16 z, glm::uint16 w)
{
glm::uint64 REG1(x);
glm::uint64 REG2(y);
glm::uint64 REG3(z);
glm::uint64 REG4(w);
REG1 = ((REG1 << 24) | REG1) & glm::uint64(0x000000FF000000FF);
REG2 = ((REG2 << 24) | REG2) & glm::uint64(0x000000FF000000FF);
REG3 = ((REG3 << 24) | REG3) & glm::uint64(0x000000FF000000FF);
REG4 = ((REG4 << 24) | REG4) & glm::uint64(0x000000FF000000FF);
REG1 = ((REG1 << 12) | REG1) & glm::uint64(0x000F000F000F000F);
REG2 = ((REG2 << 12) | REG2) & glm::uint64(0x000F000F000F000F);
REG3 = ((REG3 << 12) | REG3) & glm::uint64(0x000F000F000F000F);
REG4 = ((REG4 << 12) | REG4) & glm::uint64(0x000F000F000F000F);
REG1 = ((REG1 << 6) | REG1) & glm::uint64(0x0303030303030303);
REG2 = ((REG2 << 6) | REG2) & glm::uint64(0x0303030303030303);
REG3 = ((REG3 << 6) | REG3) & glm::uint64(0x0303030303030303);
REG4 = ((REG4 << 6) | REG4) & glm::uint64(0x0303030303030303);
REG1 = ((REG1 << 3) | REG1) & glm::uint64(0x1111111111111111);
REG2 = ((REG2 << 3) | REG2) & glm::uint64(0x1111111111111111);
REG3 = ((REG3 << 3) | REG3) & glm::uint64(0x1111111111111111);
REG4 = ((REG4 << 3) | REG4) & glm::uint64(0x1111111111111111);
return REG1 | (REG2 << 1) | (REG3 << 2) | (REG4 << 3);
}
}//namespace detail
GLM_FUNC_QUALIFIER int16 bitfieldInterleave(int8 x, int8 y)
{
union sign8
{
int8 i;
uint8 u;
} sign_x, sign_y;
union sign16
{
int16 i;
uint16 u;
} result;
sign_x.i = x;
sign_y.i = y;
result.u = bitfieldInterleave(sign_x.u, sign_y.u);
return result.i;
}
GLM_FUNC_QUALIFIER uint16 bitfieldInterleave(uint8 x, uint8 y)
{
return detail::bitfieldInterleave<uint8, uint16>(x, y);
}
GLM_FUNC_QUALIFIER int32 bitfieldInterleave(int16 x, int16 y)
{
union sign16
{
int16 i;
uint16 u;
} sign_x, sign_y;
union sign32
{
int32 i;
uint32 u;
} result;
sign_x.i = x;
sign_y.i = y;
result.u = bitfieldInterleave(sign_x.u, sign_y.u);
return result.i;
}
GLM_FUNC_QUALIFIER uint32 bitfieldInterleave(uint16 x, uint16 y)
{
return detail::bitfieldInterleave<uint16, uint32>(x, y);
}
GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int32 x, int32 y)
{
union sign32
{
int32 i;
uint32 u;
} sign_x, sign_y;
union sign64
{
int64 i;
uint64 u;
} result;
sign_x.i = x;
sign_y.i = y;
result.u = bitfieldInterleave(sign_x.u, sign_y.u);
return result.i;
}
GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint32 x, uint32 y)
{
return detail::bitfieldInterleave<uint32, uint64>(x, y);
}
GLM_FUNC_QUALIFIER int32 bitfieldInterleave(int8 x, int8 y, int8 z)
{
union sign8
{
int8 i;
uint8 u;
} sign_x, sign_y, sign_z;
union sign32
{
int32 i;
uint32 u;
} result;
sign_x.i = x;
sign_y.i = y;
sign_z.i = z;
result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u);
return result.i;
}
GLM_FUNC_QUALIFIER uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z)
{
return detail::bitfieldInterleave<uint8, uint32>(x, y, z);
}
GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int16 x, int16 y, int16 z)
{
union sign16
{
int16 i;
uint16 u;
} sign_x, sign_y, sign_z;
union sign64
{
int64 i;
uint64 u;
} result;
sign_x.i = x;
sign_y.i = y;
sign_z.i = z;
result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u);
return result.i;
}
GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z)
{
return detail::bitfieldInterleave<uint32, uint64>(x, y, z);
}
GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int32 x, int32 y, int32 z)
{
union sign16
{
int32 i;
uint32 u;
} sign_x, sign_y, sign_z;
union sign64
{
int64 i;
uint64 u;
} result;
sign_x.i = x;
sign_y.i = y;
sign_z.i = z;
result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u);
return result.i;
}
GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint32 x, uint32 y, uint32 z)
{
return detail::bitfieldInterleave<uint32, uint64>(x, y, z);
}
GLM_FUNC_QUALIFIER int32 bitfieldInterleave(int8 x, int8 y, int8 z, int8 w)
{
union sign8
{
int8 i;
uint8 u;
} sign_x, sign_y, sign_z, sign_w;
union sign32
{
int32 i;
uint32 u;
} result;
sign_x.i = x;
sign_y.i = y;
sign_z.i = z;
sign_w.i = w;
result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u, sign_w.u);
return result.i;
}
GLM_FUNC_QUALIFIER uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z, uint8 w)
{
return detail::bitfieldInterleave<uint8, uint32>(x, y, z, w);
}
GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int16 x, int16 y, int16 z, int16 w)
{
union sign16
{
int16 i;
uint16 u;
} sign_x, sign_y, sign_z, sign_w;
union sign64
{
int64 i;
uint64 u;
} result;
sign_x.i = x;
sign_y.i = y;
sign_z.i = z;
sign_w.i = w;
result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u, sign_w.u);
return result.i;
}
GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z, uint16 w)
{
return detail::bitfieldInterleave<uint16, uint64>(x, y, z, w);
}
}//namespace glm

View File

@@ -0,0 +1,66 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_bit
/// @file glm/gtx/bit.hpp
/// @date 2005-12-30 / 2011-06-07
/// @author Christophe Riccio
///
/// @see core (dependence)
///
/// @defgroup gtx_closest_point GLM_GTX_closest_point
/// @ingroup gtx
///
/// @brief Find the point on a straight line which is the closet of a point.
///
/// <glm/gtx/closest_point.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTX_closest_point
#define GLM_GTX_closest_point
// Dependency:
#include "../glm.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTX_closest_point extension included")
#endif
namespace glm
{
/// @addtogroup gtx_closest_point
/// @{
/// Find the point on a straight line which is the closet of a point.
/// @see gtx_closest_point
template <typename T, precision P>
GLM_FUNC_DECL detail::tvec3<T, P> closestPointOnLine(
detail::tvec3<T, P> const & point,
detail::tvec3<T, P> const & a,
detail::tvec3<T, P> const & b);
/// @}
}// namespace glm
#include "closest_point.inl"
#endif//GLM_GTX_closest_point

View File

@@ -0,0 +1,36 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2005-12-30
// Updated : 2008-10-05
// Licence : This source is under MIT License
// File : glm/gtx/closest_point.inl
///////////////////////////////////////////////////////////////////////////////////////////////////
#ifndef glm_gtx_closest_point
#define glm_gtx_closest_point
namespace glm
{
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<T, P> closestPointOnLine
(
detail::tvec3<T, P> const & point,
detail::tvec3<T, P> const & a,
detail::tvec3<T, P> const & b
)
{
T LineLength = distance(a, b);
detail::tvec3<T, P> Vector = point - a;
detail::tvec3<T, P> LineDirection = (b - a) / LineLength;
// Project Vector to LineDirection to get the distance of point from a
T Distance = dot(Vector, LineDirection);
if(Distance <= T(0)) return a;
if(Distance >= LineLength) return b;
return a + LineDirection * Distance;
}
}//namespace glm
#endif//glm_gtx_closest_point

View File

@@ -0,0 +1,96 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_color_space
/// @file glm/gtx/color_space.hpp
/// @date 2005-12-21 / 2011-06-07
/// @author Christophe Riccio
///
/// @see core (dependence)
///
/// @defgroup gtx_color_space GLM_GTX_color_space
/// @ingroup gtx
///
/// @brief Related to RGB to HSV conversions and operations.
///
/// <glm/gtx/color_space.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTX_color_space
#define GLM_GTX_color_space
// Dependency:
#include "../glm.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTX_color_space extension included")
#endif
namespace glm
{
/// @addtogroup gtx_color_space
/// @{
/// Converts a color from HSV color space to its color in RGB color space.
/// @see gtx_color_space
template <typename T, precision P>
GLM_FUNC_DECL detail::tvec3<T, P> rgbColor(
detail::tvec3<T, P> const & hsvValue);
/// Converts a color from RGB color space to its color in HSV color space.
/// @see gtx_color_space
template <typename T, precision P>
GLM_FUNC_DECL detail::tvec3<T, P> hsvColor(
detail::tvec3<T, P> const & rgbValue);
/// Build a saturation matrix.
/// @see gtx_color_space
template <typename T>
GLM_FUNC_DECL detail::tmat4x4<T, defaultp> saturation(
T const s);
/// Modify the saturation of a color.
/// @see gtx_color_space
template <typename T, precision P>
GLM_FUNC_DECL detail::tvec3<T, P> saturation(
T const s,
detail::tvec3<T, P> const & color);
/// Modify the saturation of a color.
/// @see gtx_color_space
template <typename T, precision P>
GLM_FUNC_DECL detail::tvec4<T, P> saturation(
T const s,
detail::tvec4<T, P> const & color);
/// Compute color luminosity associating ratios (0.33, 0.59, 0.11) to RGB canals.
/// @see gtx_color_space
template <typename T, precision P>
GLM_FUNC_DECL T luminosity(
detail::tvec3<T, P> const & color);
/// @}
}//namespace glm
#include "color_space.inl"
#endif//GLM_GTX_color_space

View File

@@ -0,0 +1,149 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2005-12-21
// Updated : 2007-02-22
// Licence : This source is under MIT License
// File : glm/gtx/color_space.inl
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace glm
{
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<T, P> rgbColor(const detail::tvec3<T, P>& hsvColor)
{
detail::tvec3<T, P> hsv = hsvColor;
detail::tvec3<T, P> rgbColor;
if(hsv.y == static_cast<T>(0))
// achromatic (grey)
rgbColor = detail::tvec3<T, P>(hsv.z);
else
{
T sector = floor(hsv.x / T(60));
T frac = (hsv.x / T(60)) - sector;
// factorial part of h
T o = hsv.z * (T(1) - hsv.y);
T p = hsv.z * (T(1) - hsv.y * frac);
T q = hsv.z * (T(1) - hsv.y * (T(1) - frac));
switch(int(sector))
{
default:
case 0:
rgbColor.r = hsv.z;
rgbColor.g = q;
rgbColor.b = o;
break;
case 1:
rgbColor.r = p;
rgbColor.g = hsv.z;
rgbColor.b = o;
break;
case 2:
rgbColor.r = o;
rgbColor.g = hsv.z;
rgbColor.b = q;
break;
case 3:
rgbColor.r = o;
rgbColor.g = p;
rgbColor.b = hsv.z;
break;
case 4:
rgbColor.r = q;
rgbColor.g = o;
rgbColor.b = hsv.z;
break;
case 5:
rgbColor.r = hsv.z;
rgbColor.g = o;
rgbColor.b = p;
break;
}
}
return rgbColor;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<T, P> hsvColor(const detail::tvec3<T, P>& rgbColor)
{
detail::tvec3<T, P> hsv = rgbColor;
float Min = min(min(rgbColor.r, rgbColor.g), rgbColor.b);
float Max = max(max(rgbColor.r, rgbColor.g), rgbColor.b);
float Delta = Max - Min;
hsv.z = Max;
if(Max != static_cast<T>(0))
{
hsv.y = Delta / hsv.z;
T h = static_cast<T>(0);
if(rgbColor.r == Max)
// between yellow & magenta
h = static_cast<T>(0) + T(60) * (rgbColor.g - rgbColor.b) / Delta;
else if(rgbColor.g == Max)
// between cyan & yellow
h = static_cast<T>(120) + T(60) * (rgbColor.b - rgbColor.r) / Delta;
else
// between magenta & cyan
h = static_cast<T>(240) + T(60) * (rgbColor.r - rgbColor.g) / Delta;
if(h < T(0))
hsv.x = h + T(360);
else
hsv.x = h;
}
else
{
// If r = g = b = 0 then s = 0, h is undefined
hsv.y = static_cast<T>(0);
hsv.x = static_cast<T>(0);
}
return hsv;
}
template <typename T>
GLM_FUNC_QUALIFIER detail::tmat4x4<T, defaultp> saturation(T const s)
{
detail::tvec3<T, defaultp> rgbw = detail::tvec3<T, defaultp>(T(0.2126), T(0.7152), T(0.0722));
T col0 = (T(1) - s) * rgbw.r;
T col1 = (T(1) - s) * rgbw.g;
T col2 = (T(1) - s) * rgbw.b;
detail::tmat4x4<T, defaultp> result(T(1));
result[0][0] = col0 + s;
result[0][1] = col0;
result[0][2] = col0;
result[1][0] = col1;
result[1][1] = col1 + s;
result[1][2] = col1;
result[2][0] = col2;
result[2][1] = col2;
result[2][2] = col2 + s;
return result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<T, P> saturation(const T s, const detail::tvec3<T, P>& color)
{
return detail::tvec3<T, P>(saturation(s) * detail::tvec4<T, P>(color, T(0)));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec4<T, P> saturation(const T s, const detail::tvec4<T, P>& color)
{
return saturation(s) * color;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER T luminosity(const detail::tvec3<T, P>& color)
{
const detail::tvec3<T, P> tmp = detail::tvec3<T, P>(0.33, 0.59, 0.11);
return dot(color, tmp);
}
}//namespace glm

View File

@@ -0,0 +1,84 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_color_space_YCoCg
/// @file glm/gtx/color_space_YCoCg.hpp
/// @date 2008-10-28 / 2011-06-07
/// @author Christophe Riccio
///
/// @see core (dependence)
///
/// @defgroup gtx_color_space_YCoCg GLM_GTX_color_space_YCoCg
/// @ingroup gtx
///
/// @brief RGB to YCoCg conversions and operations
///
/// <glm/gtx/color_space_YCoCg.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#ifndef glm_gtx_color_space_YCoCg
#define glm_gtx_color_space_YCoCg
// Dependency:
#include "../glm.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTX_color_space_YCoCg extension included")
#endif
namespace glm
{
/// @addtogroup gtx_color_space_YCoCg
/// @{
/// Convert a color from RGB color space to YCoCg color space.
/// @see gtx_color_space_YCoCg
template <typename T, precision P>
GLM_FUNC_DECL detail::tvec3<T, P> rgb2YCoCg(
detail::tvec3<T, P> const & rgbColor);
/// Convert a color from YCoCg color space to RGB color space.
/// @see gtx_color_space_YCoCg
template <typename T, precision P>
GLM_FUNC_DECL detail::tvec3<T, P> YCoCg2rgb(
detail::tvec3<T, P> const & YCoCgColor);
/// Convert a color from RGB color space to YCoCgR color space.
/// @see "YCoCg-R: A Color Space with RGB Reversibility and Low Dynamic Range"
/// @see gtx_color_space_YCoCg
template <typename T, precision P>
GLM_FUNC_DECL detail::tvec3<T, P> rgb2YCoCgR(
detail::tvec3<T, P> const & rgbColor);
/// Convert a color from YCoCgR color space to RGB color space.
/// @see "YCoCg-R: A Color Space with RGB Reversibility and Low Dynamic Range"
/// @see gtx_color_space_YCoCg
template <typename T, precision P>
GLM_FUNC_DECL detail::tvec3<T, P> YCoCgR2rgb(
detail::tvec3<T, P> const & YCoCgColor);
/// @}
}//namespace glm
#include "color_space_YCoCg.inl"
#endif//glm_gtx_color_space_YCoCg

View File

@@ -0,0 +1,64 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2008-10-28
// Updated : 2008-10-28
// Licence : This source is under MIT License
// File : glm/gtx/color_space_YCoCg.inl
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace glm
{
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<T, P> rgb2YCoCg
(
detail::tvec3<T, P> const & rgbColor
)
{
detail::tvec3<T, P> result;
result.x/*Y */ = rgbColor.r / T(4) + rgbColor.g / T(2) + rgbColor.b / T(4);
result.y/*Co*/ = rgbColor.r / T(2) + rgbColor.g * T(0) - rgbColor.b / T(2);
result.z/*Cg*/ = - rgbColor.r / T(4) + rgbColor.g / T(2) - rgbColor.b / T(4);
return result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<T, P> rgb2YCoCgR
(
detail::tvec3<T, P> const & rgbColor
)
{
detail::tvec3<T, P> result;
result.x/*Y */ = rgbColor.g / T(2) + (rgbColor.r + rgbColor.b) / T(4);
result.y/*Co*/ = rgbColor.r - rgbColor.b;
result.z/*Cg*/ = rgbColor.g - (rgbColor.r + rgbColor.b) / T(2);
return result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<T, P> YCoCg2rgb
(
detail::tvec3<T, P> const & YCoCgColor
)
{
detail::tvec3<T, P> result;
result.r = YCoCgColor.x + YCoCgColor.y - YCoCgColor.z;
result.g = YCoCgColor.x + YCoCgColor.z;
result.b = YCoCgColor.x - YCoCgColor.y - YCoCgColor.z;
return result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<T, P> YCoCgR2rgb
(
detail::tvec3<T, P> const & YCoCgRColor
)
{
detail::tvec3<T, P> result;
T tmp = YCoCgRColor.x - (YCoCgRColor.z / T(2));
result.g = YCoCgRColor.z + tmp;
result.b = tmp - (YCoCgRColor.y / T(2));
result.r = result.b + YCoCgRColor.y;
return result;
}
}//namespace glm

View File

@@ -0,0 +1,160 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_compatibility
/// @file glm/gtx/compatibility.hpp
/// @date 2007-01-24 / 2011-06-07
/// @author Christophe Riccio
///
/// @see core (dependence)
/// @see gtc_half_float (dependence)
///
/// @defgroup gtx_compatibility GLM_GTX_compatibility
/// @ingroup gtx
///
/// @brief Provide functions to increase the compatibility with Cg and HLSL languages
///
/// <glm/gtx/compatibility.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTX_compatibility
#define GLM_GTX_compatibility
// Dependency:
#include "../glm.hpp"
#include "../gtc/quaternion.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTX_compatibility extension included")
#endif
#if(GLM_COMPILER & GLM_COMPILER_VC)
# include <cfloat>
#elif(GLM_COMPILER & GLM_COMPILER_GCC)
# include <cmath>
# if(GLM_PLATFORM & GLM_PLATFORM_ANDROID)
# undef isfinite
# endif
#endif//GLM_COMPILER
namespace glm
{
/// @addtogroup gtx_compatibility
/// @{
template <typename T> GLM_FUNC_QUALIFIER T lerp(T x, T y, T a){return mix(x, y, a);} //!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec2<T, P> lerp(const detail::tvec2<T, P>& x, const detail::tvec2<T, P>& y, T a){return mix(x, y, a);} //!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec3<T, P> lerp(const detail::tvec3<T, P>& x, const detail::tvec3<T, P>& y, T a){return mix(x, y, a);} //!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec4<T, P> lerp(const detail::tvec4<T, P>& x, const detail::tvec4<T, P>& y, T a){return mix(x, y, a);} //!< \brief Returns x * (1.0 - a) + y * a, i.e., the linear blend of x and y using the floating-point value a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec2<T, P> lerp(const detail::tvec2<T, P>& x, const detail::tvec2<T, P>& y, const detail::tvec2<T, P>& a){return mix(x, y, a);} //!< \brief Returns the component-wise result of x * (1.0 - a) + y * a, i.e., the linear blend of x and y using vector a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec3<T, P> lerp(const detail::tvec3<T, P>& x, const detail::tvec3<T, P>& y, const detail::tvec3<T, P>& a){return mix(x, y, a);} //!< \brief Returns the component-wise result of x * (1.0 - a) + y * a, i.e., the linear blend of x and y using vector a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec4<T, P> lerp(const detail::tvec4<T, P>& x, const detail::tvec4<T, P>& y, const detail::tvec4<T, P>& a){return mix(x, y, a);} //!< \brief Returns the component-wise result of x * (1.0 - a) + y * a, i.e., the linear blend of x and y using vector a. The value for a is not restricted to the range [0, 1]. (From GLM_GTX_compatibility)
template <typename T, precision P> GLM_FUNC_QUALIFIER T slerp(detail::tquat<T, P> const & x, detail::tquat<T, P> const & y, T const & a){return mix(x, y, a);} //!< \brief Returns the slurp interpolation between two quaternions.
template <typename T, precision P> GLM_FUNC_QUALIFIER T saturate(T x){return clamp(x, T(0), T(1));} //!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility)
template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec2<T, P> saturate(const detail::tvec2<T, P>& x){return clamp(x, T(0), T(1));} //!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility)
template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec3<T, P> saturate(const detail::tvec3<T, P>& x){return clamp(x, T(0), T(1));} //!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility)
template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec4<T, P> saturate(const detail::tvec4<T, P>& x){return clamp(x, T(0), T(1));} //!< \brief Returns clamp(x, 0, 1) for each component in x. (From GLM_GTX_compatibility)
template <typename T, precision P> GLM_FUNC_QUALIFIER T atan2(T x, T y){return atan(x, y);} //!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility)
template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec2<T, P> atan2(const detail::tvec2<T, P>& x, const detail::tvec2<T, P>& y){return atan(x, y);} //!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility)
template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec3<T, P> atan2(const detail::tvec3<T, P>& x, const detail::tvec3<T, P>& y){return atan(x, y);} //!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility)
template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec4<T, P> atan2(const detail::tvec4<T, P>& x, const detail::tvec4<T, P>& y){return atan(x, y);} //!< \brief Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine what quadrant the angle is in. The range of values returned by this function is [-PI, PI]. Results are undefined if x and y are both 0. (From GLM_GTX_compatibility)
template <typename genType> GLM_FUNC_DECL bool isfinite(genType const & x); //!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility)
template <typename T, precision P> GLM_FUNC_DECL detail::tvec2<bool, P> isfinite(const detail::tvec2<T, P>& x); //!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility)
template <typename T, precision P> GLM_FUNC_DECL detail::tvec3<bool, P> isfinite(const detail::tvec3<T, P>& x); //!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility)
template <typename T, precision P> GLM_FUNC_DECL detail::tvec4<bool, P> isfinite(const detail::tvec4<T, P>& x); //!< \brief Test whether or not a scalar or each vector component is a finite value. (From GLM_GTX_compatibility)
typedef bool bool1; //!< \brief boolean type with 1 component. (From GLM_GTX_compatibility extension)
typedef detail::tvec2<bool, highp> bool2; //!< \brief boolean type with 2 components. (From GLM_GTX_compatibility extension)
typedef detail::tvec3<bool, highp> bool3; //!< \brief boolean type with 3 components. (From GLM_GTX_compatibility extension)
typedef detail::tvec4<bool, highp> bool4; //!< \brief boolean type with 4 components. (From GLM_GTX_compatibility extension)
typedef bool bool1x1; //!< \brief boolean matrix with 1 x 1 component. (From GLM_GTX_compatibility extension)
typedef detail::tmat2x2<bool, highp> bool2x2; //!< \brief boolean matrix with 2 x 2 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat2x3<bool, highp> bool2x3; //!< \brief boolean matrix with 2 x 3 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat2x4<bool, highp> bool2x4; //!< \brief boolean matrix with 2 x 4 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat3x2<bool, highp> bool3x2; //!< \brief boolean matrix with 3 x 2 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat3x3<bool, highp> bool3x3; //!< \brief boolean matrix with 3 x 3 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat3x4<bool, highp> bool3x4; //!< \brief boolean matrix with 3 x 4 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat4x2<bool, highp> bool4x2; //!< \brief boolean matrix with 4 x 2 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat4x3<bool, highp> bool4x3; //!< \brief boolean matrix with 4 x 3 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat4x4<bool, highp> bool4x4; //!< \brief boolean matrix with 4 x 4 components. (From GLM_GTX_compatibility extension)
typedef int int1; //!< \brief integer vector with 1 component. (From GLM_GTX_compatibility extension)
typedef detail::tvec2<int, highp> int2; //!< \brief integer vector with 2 components. (From GLM_GTX_compatibility extension)
typedef detail::tvec3<int, highp> int3; //!< \brief integer vector with 3 components. (From GLM_GTX_compatibility extension)
typedef detail::tvec4<int, highp> int4; //!< \brief integer vector with 4 components. (From GLM_GTX_compatibility extension)
typedef int int1x1; //!< \brief integer matrix with 1 component. (From GLM_GTX_compatibility extension)
typedef detail::tmat2x2<int, highp> int2x2; //!< \brief integer matrix with 2 x 2 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat2x3<int, highp> int2x3; //!< \brief integer matrix with 2 x 3 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat2x4<int, highp> int2x4; //!< \brief integer matrix with 2 x 4 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat3x2<int, highp> int3x2; //!< \brief integer matrix with 3 x 2 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat3x3<int, highp> int3x3; //!< \brief integer matrix with 3 x 3 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat3x4<int, highp> int3x4; //!< \brief integer matrix with 3 x 4 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat4x2<int, highp> int4x2; //!< \brief integer matrix with 4 x 2 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat4x3<int, highp> int4x3; //!< \brief integer matrix with 4 x 3 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat4x4<int, highp> int4x4; //!< \brief integer matrix with 4 x 4 components. (From GLM_GTX_compatibility extension)
typedef float float1; //!< \brief single-precision floating-point vector with 1 component. (From GLM_GTX_compatibility extension)
typedef detail::tvec2<float, highp> float2; //!< \brief single-precision floating-point vector with 2 components. (From GLM_GTX_compatibility extension)
typedef detail::tvec3<float, highp> float3; //!< \brief single-precision floating-point vector with 3 components. (From GLM_GTX_compatibility extension)
typedef detail::tvec4<float, highp> float4; //!< \brief single-precision floating-point vector with 4 components. (From GLM_GTX_compatibility extension)
typedef float float1x1; //!< \brief single-precision floating-point matrix with 1 component. (From GLM_GTX_compatibility extension)
typedef detail::tmat2x2<float, highp> float2x2; //!< \brief single-precision floating-point matrix with 2 x 2 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat2x3<float, highp> float2x3; //!< \brief single-precision floating-point matrix with 2 x 3 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat2x4<float, highp> float2x4; //!< \brief single-precision floating-point matrix with 2 x 4 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat3x2<float, highp> float3x2; //!< \brief single-precision floating-point matrix with 3 x 2 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat3x3<float, highp> float3x3; //!< \brief single-precision floating-point matrix with 3 x 3 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat3x4<float, highp> float3x4; //!< \brief single-precision floating-point matrix with 3 x 4 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat4x2<float, highp> float4x2; //!< \brief single-precision floating-point matrix with 4 x 2 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat4x3<float, highp> float4x3; //!< \brief single-precision floating-point matrix with 4 x 3 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat4x4<float, highp> float4x4; //!< \brief single-precision floating-point matrix with 4 x 4 components. (From GLM_GTX_compatibility extension)
typedef double double1; //!< \brief double-precision floating-point vector with 1 component. (From GLM_GTX_compatibility extension)
typedef detail::tvec2<double, highp> double2; //!< \brief double-precision floating-point vector with 2 components. (From GLM_GTX_compatibility extension)
typedef detail::tvec3<double, highp> double3; //!< \brief double-precision floating-point vector with 3 components. (From GLM_GTX_compatibility extension)
typedef detail::tvec4<double, highp> double4; //!< \brief double-precision floating-point vector with 4 components. (From GLM_GTX_compatibility extension)
typedef double double1x1; //!< \brief double-precision floating-point matrix with 1 component. (From GLM_GTX_compatibility extension)
typedef detail::tmat2x2<double, highp> double2x2; //!< \brief double-precision floating-point matrix with 2 x 2 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat2x3<double, highp> double2x3; //!< \brief double-precision floating-point matrix with 2 x 3 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat2x4<double, highp> double2x4; //!< \brief double-precision floating-point matrix with 2 x 4 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat3x2<double, highp> double3x2; //!< \brief double-precision floating-point matrix with 3 x 2 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat3x3<double, highp> double3x3; //!< \brief double-precision floating-point matrix with 3 x 3 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat3x4<double, highp> double3x4; //!< \brief double-precision floating-point matrix with 3 x 4 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat4x2<double, highp> double4x2; //!< \brief double-precision floating-point matrix with 4 x 2 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat4x3<double, highp> double4x3; //!< \brief double-precision floating-point matrix with 4 x 3 components. (From GLM_GTX_compatibility extension)
typedef detail::tmat4x4<double, highp> double4x4; //!< \brief double-precision floating-point matrix with 4 x 4 components. (From GLM_GTX_compatibility extension)
/// @}
}//namespace glm
#include "compatibility.inl"
#endif//GLM_GTX_compatibility

View File

@@ -0,0 +1,58 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2007-03-16
// Updated : 2008-10-24
// Licence : This source is under MIT License
// File : glm/gtx/compatibility.inl
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace glm
{
// isfinite
template <typename genType>
GLM_FUNC_QUALIFIER bool isfinite(
genType const & x)
{
# if(GLM_LANG & GLM_LANG_CXX11_FLAG)
return std::isfinite(x) != 0;
# elif(GLM_COMPILER & GLM_COMPILER_VC)
return _finite(x);
# elif(GLM_COMPILER & GLM_COMPILER_GCC && GLM_PLATFORM & GLM_PLATFORM_ANDROID)
return _isfinite(x) != 0;
# else
return isfinite(x) != 0;
# endif
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec2<bool, P> isfinite(
detail::tvec2<T, P> const & x)
{
return detail::tvec2<bool, P>(
isfinite(x.x),
isfinite(x.y));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<bool, P> isfinite(
detail::tvec3<T, P> const & x)
{
return detail::tvec3<bool, P>(
isfinite(x.x),
isfinite(x.y),
isfinite(x.z));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec4<bool, P> isfinite(
detail::tvec4<T, P> const & x)
{
return detail::tvec4<bool, P>(
isfinite(x.x),
isfinite(x.y),
isfinite(x.z),
isfinite(x.w));
}
}//namespace glm

View File

@@ -0,0 +1,82 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_component_wise
/// @file glm/gtx/component_wise.hpp
/// @date 2007-05-21 / 2011-06-07
/// @author Christophe Riccio
///
/// @see core (dependence)
///
/// @defgroup gtx_component_wise GLM_GTX_component_wise
/// @ingroup gtx
///
/// @brief Operations between components of a type
///
/// <glm/gtx/component_wise.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTX_component_wise
#define GLM_GTX_component_wise
// Dependencies
#include "../detail/setup.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTX_component_wise extension included")
#endif
namespace glm
{
/// @addtogroup gtx_component_wise
/// @{
/// Add all vector components together.
/// @see gtx_component_wise
template <typename genType>
GLM_FUNC_DECL typename genType::value_type compAdd(
genType const & v);
/// Multiply all vector components together.
/// @see gtx_component_wise
template <typename genType>
GLM_FUNC_DECL typename genType::value_type compMul(
genType const & v);
/// Find the minimum value between single vector components.
/// @see gtx_component_wise
template <typename genType>
GLM_FUNC_DECL typename genType::value_type compMin(
genType const & v);
/// Find the maximum value between single vector components.
/// @see gtx_component_wise
template <typename genType>
GLM_FUNC_DECL typename genType::value_type compMax(
genType const & v);
/// @}
}//namespace glm
#include "component_wise.inl"
#endif//GLM_GTX_component_wise

View File

@@ -0,0 +1,47 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2007-05-21
// Updated : 2010-02-12
// Licence : This source is under MIT License
// File : gtx_component_wise.inl
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace glm
{
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER T compAdd(vecType<T, P> const & v)
{
T result(0);
for(length_t i = 0; i < v.length(); ++i)
result += v[i];
return result;
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER T compMul(vecType<T, P> const & v)
{
T result(1);
for(length_t i = 0; i < v.length(); ++i)
result *= v[i];
return result;
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER T compMin(vecType<T, P> const & v)
{
T result(v[0]);
for(length_t i = 1; i < v.length(); ++i)
result = min(result, v[i]);
return result;
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER T compMax(vecType<T, P> const & v)
{
T result(v[0]);
for(length_t i = 1; i < v.length(); ++i)
result = max(result, v[i]);
return result;
}
}//namespace glm

View File

@@ -0,0 +1,33 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2013 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTX_constants
#define GLM_GTX_constants
#include "../gtc/constants.hpp"
#if(defined(GLM_MESSAGES))
# pragma message("GLM: GLM_GTX_constants extension is deprecated, include GLM_GTC_constants (glm/gtc/constants.hpp) instead")
#endif
#endif//GLM_GTX_constants

View File

@@ -0,0 +1,295 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_dual_quaternion
/// @file glm/gtx/dual_quaternion.hpp
/// @date 2013-02-10 / 2013-02-20
/// @author Maksim Vorobiev (msomeone@gmail.com)
///
/// @see core (dependence)
/// @see gtc_half_float (dependence)
/// @see gtc_constants (dependence)
/// @see gtc_quaternion (dependence)
///
/// @defgroup gtc_dual_quaternion GLM_GTX_dual_quaternion
/// @ingroup gtc
///
/// @brief Defines a templated dual-quaternion type and several dual-quaternion operations.
///
/// <glm/gtx/dual_quaternion.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTX_dual_quaternion
#define GLM_GTX_dual_quaternion
// Dependency:
#include "../glm.hpp"
#include "../gtc/constants.hpp"
#include "../gtc/quaternion.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTX_dual_quaternion extension included")
#endif
namespace glm{
namespace detail
{
template <typename T, precision P>
struct tdualquat
{
enum ctor{null};
typedef glm::detail::tquat<T, P> part_type;
public:
glm::detail::tquat<T, P> real, dual;
GLM_FUNC_DECL GLM_CONSTEXPR int length() const;
// Constructors
GLM_FUNC_DECL tdualquat();
GLM_FUNC_DECL explicit tdualquat(tquat<T, P> const & real);
GLM_FUNC_DECL tdualquat(tquat<T, P> const & real,tquat<T, P> const & dual);
GLM_FUNC_DECL tdualquat(tquat<T, P> const & orientation,tvec3<T, P> const& translation);
//////////////////////////////////////////////////////////////
// tdualquat conversions
GLM_FUNC_DECL explicit tdualquat(tmat2x4<T, P> const & holder_mat);
GLM_FUNC_DECL explicit tdualquat(tmat3x4<T, P> const & aug_mat);
// Accesses
GLM_FUNC_DECL part_type & operator[](int i);
GLM_FUNC_DECL part_type const & operator[](int i) const;
// Operators
GLM_FUNC_DECL tdualquat<T, P> & operator*=(T const & s);
GLM_FUNC_DECL tdualquat<T, P> & operator/=(T const & s);
};
template <typename T, precision P>
GLM_FUNC_DECL detail::tquat<T, P> operator- (
detail::tquat<T, P> const & q);
template <typename T, precision P>
GLM_FUNC_DECL detail::tdualquat<T, P> operator+ (
detail::tdualquat<T, P> const & q,
detail::tdualquat<T, P> const & p);
template <typename T, precision P>
GLM_FUNC_DECL detail::tdualquat<T, P> operator* (
detail::tdualquat<T, P> const & q,
detail::tdualquat<T, P> const & p);
template <typename T, precision P>
GLM_FUNC_DECL detail::tvec3<T, P> operator* (
detail::tquat<T, P> const & q,
detail::tvec3<T, P> const & v);
template <typename T, precision P>
GLM_FUNC_DECL detail::tvec3<T, P> operator* (
detail::tvec3<T, P> const & v,
detail::tquat<T, P> const & q);
template <typename T, precision P>
GLM_FUNC_DECL detail::tvec4<T, P> operator* (
detail::tquat<T, P> const & q,
detail::tvec4<T, P> const & v);
template <typename T, precision P>
GLM_FUNC_DECL detail::tvec4<T, P> operator* (
detail::tvec4<T, P> const & v,
detail::tquat<T, P> const & q);
template <typename T, precision P>
GLM_FUNC_DECL detail::tdualquat<T, P> operator* (
detail::tdualquat<T, P> const & q,
T const & s);
template <typename T, precision P>
GLM_FUNC_DECL detail::tdualquat<T, P> operator* (
T const & s,
detail::tdualquat<T, P> const & q);
template <typename T, precision P>
GLM_FUNC_DECL detail::tdualquat<T, P> operator/ (
detail::tdualquat<T, P> const & q,
T const & s);
} //namespace detail
/// @addtogroup gtc_dual_quaternion
/// @{
/// Returns the normalized quaternion.
///
/// @see gtc_dual_quaternion
template <typename T, precision P>
GLM_FUNC_DECL detail::tdualquat<T, P> normalize(
detail::tdualquat<T, P> const & q);
/// Returns the linear interpolation of two dual quaternion.
///
/// @see gtc_dual_quaternion
template <typename T, precision P>
GLM_FUNC_DECL detail::tdualquat<T, P> lerp(
detail::tdualquat<T, P> const & x,
detail::tdualquat<T, P> const & y,
T const & a);
/// Returns the q inverse.
///
/// @see gtc_dual_quaternion
template <typename T, precision P>
GLM_FUNC_DECL detail::tdualquat<T, P> inverse(
detail::tdualquat<T, P> const & q);
/*
/// Extracts a rotation part from dual-quaternion to a 3 * 3 matrix.
/// TODO
///
/// @see gtc_dual_quaternion
template <typename T, precision P>
detail::tmat3x3<T, P> mat3_cast(
detail::tdualquat<T, P> const & x);
*/
/// Converts a quaternion to a 2 * 4 matrix.
///
/// @see gtc_dual_quaternion
template <typename T, precision P>
GLM_FUNC_DECL detail::tmat2x4<T, P> mat2x4_cast(
detail::tdualquat<T, P> const & x);
/// Converts a quaternion to a 3 * 4 matrix.
///
/// @see gtc_dual_quaternion
template <typename T, precision P>
GLM_FUNC_DECL detail::tmat3x4<T, P> mat3x4_cast(
detail::tdualquat<T, P> const & x);
/// Converts a 2 * 4 matrix (matrix which holds real and dual parts) to a quaternion.
///
/// @see gtc_dual_quaternion
template <typename T, precision P>
GLM_FUNC_DECL detail::tdualquat<T, P> dualquat_cast(
detail::tmat2x4<T, P> const & x);
/// Converts a 3 * 4 matrix (augmented matrix rotation + translation) to a quaternion.
///
/// @see gtc_dual_quaternion
template <typename T, precision P>
GLM_FUNC_DECL detail::tdualquat<T, P> dualquat_cast(
detail::tmat3x4<T, P> const & x);
/// Dual-quaternion of low single-precision floating-point numbers.
///
/// @see gtc_dual_quaternion
typedef detail::tdualquat<float, lowp> lowp_dualquat;
/// Dual-quaternion of medium single-precision floating-point numbers.
///
/// @see gtc_dual_quaternion
typedef detail::tdualquat<float, mediump> mediump_dualquat;
/// Dual-quaternion of high single-precision floating-point numbers.
///
/// @see gtc_dual_quaternion
typedef detail::tdualquat<float, highp> highp_dualquat;
/// Dual-quaternion of low single-precision floating-point numbers.
///
/// @see gtc_dual_quaternion
typedef detail::tdualquat<float, lowp> lowp_fdualquat;
/// Dual-quaternion of medium single-precision floating-point numbers.
///
/// @see gtc_dual_quaternion
typedef detail::tdualquat<float, mediump> mediump_fdualquat;
/// Dual-quaternion of high single-precision floating-point numbers.
///
/// @see gtc_dual_quaternion
typedef detail::tdualquat<float, highp> highp_fdualquat;
/// Dual-quaternion of low double-precision floating-point numbers.
///
/// @see gtc_dual_quaternion
typedef detail::tdualquat<double, lowp> lowp_ddualquat;
/// Dual-quaternion of medium double-precision floating-point numbers.
///
/// @see gtc_dual_quaternion
typedef detail::tdualquat<double, mediump> mediump_ddualquat;
/// Dual-quaternion of high double-precision floating-point numbers.
///
/// @see gtc_dual_quaternion
typedef detail::tdualquat<double, highp> highp_ddualquat;
#if(!defined(GLM_PRECISION_HIGHP_FLOAT) && !defined(GLM_PRECISION_MEDIUMP_FLOAT) && !defined(GLM_PRECISION_LOWP_FLOAT))
/// Dual-quaternion of floating-point numbers.
///
/// @see gtc_dual_quaternion
typedef highp_fdualquat dualquat;
/// Dual-quaternion of single-precision floating-point numbers.
///
/// @see gtc_dual_quaternion
typedef highp_fdualquat fdualquat;
#elif(defined(GLM_PRECISION_HIGHP_FLOAT) && !defined(GLM_PRECISION_MEDIUMP_FLOAT) && !defined(GLM_PRECISION_LOWP_FLOAT))
typedef highp_fdualquat dualquat;
typedef highp_fdualquat fdualquat;
#elif(!defined(GLM_PRECISION_HIGHP_FLOAT) && defined(GLM_PRECISION_MEDIUMP_FLOAT) && !defined(GLM_PRECISION_LOWP_FLOAT))
typedef mediump_fdualquat dualquat;
typedef mediump_fdualquat fdualquat;
#elif(!defined(GLM_PRECISION_HIGHP_FLOAT) && !defined(GLM_PRECISION_MEDIUMP_FLOAT) && defined(GLM_PRECISION_LOWP_FLOAT))
typedef lowp_fdualquat dualquat;
typedef lowp_fdualquat fdualquat;
#else
# error "GLM error: multiple default precision requested for single-precision floating-point types"
#endif
#if(!defined(GLM_PRECISION_HIGHP_DOUBLE) && !defined(GLM_PRECISION_MEDIUMP_DOUBLE) && !defined(GLM_PRECISION_LOWP_DOUBLE))
/// Dual-quaternion of default double-precision floating-point numbers.
///
/// @see gtc_dual_quaternion
typedef highp_ddualquat ddualquat;
#elif(defined(GLM_PRECISION_HIGHP_DOUBLE) && !defined(GLM_PRECISION_MEDIUMP_DOUBLE) && !defined(GLM_PRECISION_LOWP_DOUBLE))
typedef highp_ddualquat ddualquat;
#elif(!defined(GLM_PRECISION_HIGHP_DOUBLE) && defined(GLM_PRECISION_MEDIUMP_DOUBLE) && !defined(GLM_PRECISION_LOWP_DOUBLE))
typedef mediump_ddualquat ddualquat;
#elif(!defined(GLM_PRECISION_HIGHP_DOUBLE) && !defined(GLM_PRECISION_MEDIUMP_DOUBLE) && defined(GLM_PRECISION_LOWP_DOUBLE))
typedef lowp_ddualquat ddualquat;
#else
# error "GLM error: Multiple default precision requested for double-precision floating-point types"
#endif
/// @}
} //namespace glm
#include "dual_quaternion.inl"
#endif//GLM_GTX_dual_quaternion

View File

@@ -0,0 +1,421 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_dual_quaternion
/// @file glm/gtx/dual_quaternion.inl
/// @date 2013-02-10 / 2013-02-13
/// @author Maksim Vorobiev (msomeone@gmail.com)
///////////////////////////////////////////////////////////////////////////////////
#include "../geometric.hpp"
#include <limits>
namespace glm{
namespace detail
{
template <typename T, precision P>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR int tdualquat<T, P>::length() const
{
return 8;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tdualquat<T, P>::tdualquat() :
real(tquat<T, P>()),
dual(tquat<T, P>(T(0), T(0), T(0), T(0)))
{}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tdualquat<T, P>::tdualquat
(
tquat<T, P> const & r
) :
real(r),
dual(tquat<T, P>(T(0), T(0), T(0), T(0)))
{}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tdualquat<T, P>::tdualquat
(
tquat<T, P> const & r,
tquat<T, P> const & d
) :
real(r),
dual(d)
{}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tdualquat<T, P>::tdualquat
(
tquat<T, P> const & q,
tvec3<T, P> const& p
) :
real(q),
dual(
T(-0.5) * ( p.x*q.x + p.y*q.y + p.z*q.z),
T(+0.5) * ( p.x*q.w + p.y*q.z - p.z*q.y),
T(+0.5) * (-p.x*q.z + p.y*q.w + p.z*q.x),
T(+0.5) * ( p.x*q.y - p.y*q.x + p.z*q.w))
{}
//////////////////////////////////////////////////////////////
// tdualquat conversions
template <typename T, precision P>
GLM_FUNC_QUALIFIER tdualquat<T, P>::tdualquat
(
tmat2x4<T, P> const & m
)
{
*this = dualquat_cast(m);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tdualquat<T, P>::tdualquat
(
tmat3x4<T, P> const & m
)
{
*this = dualquat_cast(m);
}
//////////////////////////////////////////////////////////////
// tdualquat<T, P> accesses
template <typename T, precision P>
GLM_FUNC_QUALIFIER typename tdualquat<T, P>::part_type & tdualquat<T, P>::operator [] (int i)
{
assert(i >= 0 && i < this->length());
return (&real)[i];
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER typename tdualquat<T, P>::part_type const & tdualquat<T, P>::operator [] (int i) const
{
assert(i >= 0 && i < this->length());
return (&real)[i];
}
//////////////////////////////////////////////////////////////
// tdualquat<valType> operators
template <typename T, precision P>
GLM_FUNC_QUALIFIER tdualquat<T, P> & tdualquat<T, P>::operator *=
(
T const & s
)
{
this->real *= s;
this->dual *= s;
return *this;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tdualquat<T, P> & tdualquat<T, P>::operator /=
(
T const & s
)
{
this->real /= s;
this->dual /= s;
return *this;
}
//////////////////////////////////////////////////////////////
// tquat<valType> external operators
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tdualquat<T, P> operator-
(
detail::tdualquat<T, P> const & q
)
{
return detail::tdualquat<T, P>(-q.real,-q.dual);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tdualquat<T, P> operator+
(
detail::tdualquat<T, P> const & q,
detail::tdualquat<T, P> const & p
)
{
return detail::tdualquat<T, P>(q.real + p.real,q.dual + p.dual);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tdualquat<T, P> operator*
(
detail::tdualquat<T, P> const & p,
detail::tdualquat<T, P> const & o
)
{
return detail::tdualquat<T, P>(p.real * o.real,p.real * o.dual + p.dual * o.real);
}
// Transformation
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<T, P> operator*
(
detail::tdualquat<T, P> const & q,
detail::tvec3<T, P> const & v
)
{
detail::tvec3<T, P> const real_v3(q.real.x,q.real.y,q.real.z);
detail::tvec3<T, P> const dual_v3(q.dual.x,q.dual.y,q.dual.z);
return (cross(real_v3, cross(real_v3,v) + v * q.real.w + dual_v3) + dual_v3 * q.real.w - real_v3 * q.dual.w) * T(2) + v;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<T, P> operator*
(
detail::tvec3<T, P> const & v,
detail::tdualquat<T, P> const & q
)
{
return glm::inverse(q) * v;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec4<T, P> operator*
(
detail::tdualquat<T, P> const & q,
detail::tvec4<T, P> const & v
)
{
return detail::tvec4<T, P>(q * detail::tvec3<T, P>(v), v.w);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec4<T, P> operator*
(
detail::tvec4<T, P> const & v,
detail::tdualquat<T, P> const & q
)
{
return glm::inverse(q) * v;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tdualquat<T, P> operator*
(
detail::tdualquat<T, P> const & q,
T const & s
)
{
return detail::tdualquat<T, P>(q.real * s, q.dual * s);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tdualquat<T, P> operator*
(
T const & s,
detail::tdualquat<T, P> const & q
)
{
return q * s;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tdualquat<T, P> operator/
(
detail::tdualquat<T, P> const & q,
T const & s
)
{
return detail::tdualquat<T, P>(q.real / s, q.dual / s);
}
//////////////////////////////////////
// Boolean operators
template <typename T, precision P>
GLM_FUNC_QUALIFIER bool operator==
(
detail::tdualquat<T, P> const & q1,
detail::tdualquat<T, P> const & q2
)
{
return (q1.real == q2.real) && (q1.dual == q2.dual);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER bool operator!=
(
detail::tdualquat<T, P> const & q1,
detail::tdualquat<T, P> const & q2
)
{
return (q1.real != q2.dual) || (q1.real != q2.dual);
}
}//namespace detail
////////////////////////////////////////////////////////
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tdualquat<T, P> normalize
(
detail::tdualquat<T, P> const & q
)
{
return q / length(q.real);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tdualquat<T, P> lerp
(
detail::tdualquat<T, P> const & x,
detail::tdualquat<T, P> const & y,
T const & a
)
{
// Dual Quaternion Linear blend aka DLB:
// Lerp is only defined in [0, 1]
assert(a >= static_cast<T>(0));
assert(a <= static_cast<T>(1));
T const k = dot(x.real,y.real) < static_cast<T>(0) ? -a : a;
T const one(1);
return detail::tdualquat<T, P>(x * (one - a) + y * k);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tdualquat<T, P> inverse
(
detail::tdualquat<T, P> const & q
)
{
const glm::detail::tquat<T, P> real = conjugate(q.real);
const glm::detail::tquat<T, P> dual = conjugate(q.dual);
return detail::tdualquat<T, P>(real, dual + (real * (-2.0f * dot(real,dual))));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tmat2x4<T, P> mat2x4_cast
(
detail::tdualquat<T, P> const & x
)
{
return detail::tmat2x4<T, P>( x[0].x, x[0].y, x[0].z, x[0].w, x[1].x, x[1].y, x[1].z, x[1].w );
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tmat3x4<T, P> mat3x4_cast
(
detail::tdualquat<T, P> const & x
)
{
detail::tquat<T, P> r = x.real / length2(x.real);
detail::tquat<T, P> const rr(r.w * x.real.w, r.x * x.real.x, r.y * x.real.y, r.z * x.real.z);
r *= static_cast<T>(2);
T const xy = r.x * x.real.y;
T const xz = r.x * x.real.z;
T const yz = r.y * x.real.z;
T const wx = r.w * x.real.x;
T const wy = r.w * x.real.y;
T const wz = r.w * x.real.z;
detail::tvec4<T, P> const a(
rr.w + rr.x - rr.y - rr.z,
xy - wz,
xz + wy,
-(x.dual.w * r.x - x.dual.x * r.w + x.dual.y * r.z - x.dual.z * r.y));
detail::tvec4<T, P> const b(
xy + wz,
rr.w + rr.y - rr.x - rr.z,
yz - wx,
-(x.dual.w * r.y - x.dual.x * r.z - x.dual.y * r.w + x.dual.z * r.x));
detail::tvec4<T, P> const c(
xz - wy,
yz + wx,
rr.w + rr.z - rr.x - rr.y,
-(x.dual.w * r.z + x.dual.x * r.y - x.dual.y * r.x - x.dual.z * r.w));
return detail::tmat3x4<T, P>(a, b, c);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tdualquat<T, P> dualquat_cast
(
detail::tmat2x4<T, P> const & x
)
{
return detail::tdualquat<T, P>(
detail::tquat<T, P>( x[0].w, x[0].x, x[0].y, x[0].z ),
detail::tquat<T, P>( x[1].w, x[1].x, x[1].y, x[1].z ));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tdualquat<T, P> dualquat_cast
(
detail::tmat3x4<T, P> const & x
)
{
detail::tquat<T, P> real;
T const trace = x[0].x + x[1].y + x[2].z;
if(trace > T(0))
{
T const r = sqrt(T(1) + trace);
T const invr = static_cast<T>(0.5) / r;
real.w = static_cast<T>(0.5) * r;
real.x = (x[2].y - x[1].z) * invr;
real.y = (x[0].z - x[2].x) * invr;
real.z = (x[1].x - x[0].y) * invr;
}
else if(x[0].x > x[1].y && x[0].x > x[2].z)
{
T const r = sqrt(T(1) + x[0].x - x[1].y - x[2].z);
T const invr = static_cast<T>(0.5) / r;
real.x = static_cast<T>(0.5)*r;
real.y = (x[1].x + x[0].y) * invr;
real.z = (x[0].z + x[2].x) * invr;
real.w = (x[2].y - x[1].z) * invr;
}
else if(x[1].y > x[2].z)
{
T const r = sqrt(T(1) + x[1].y - x[0].x - x[2].z);
T const invr = static_cast<T>(0.5) / r;
real.x = (x[1].x + x[0].y) * invr;
real.y = static_cast<T>(0.5) * r;
real.z = (x[2].y + x[1].z) * invr;
real.w = (x[0].z - x[2].x) * invr;
}
else
{
T const r = sqrt(T(1) + x[2].z - x[0].x - x[1].y);
T const invr = static_cast<T>(0.5) / r;
real.x = (x[0].z + x[2].x) * invr;
real.y = (x[2].y + x[1].z) * invr;
real.z = static_cast<T>(0.5) * r;
real.w = (x[1].x - x[0].y) * invr;
}
detail::tquat<T, P> dual;
dual.x = T(0.5) * ( x[0].w * real.w + x[1].w * real.z - x[2].w * real.y);
dual.y = T(0.5) * (-x[0].w * real.z + x[1].w * real.w + x[2].w * real.x);
dual.z = T(0.5) * ( x[0].w * real.y - x[1].w * real.x + x[2].w * real.w);
dual.w = -T(0.5) * ( x[0].w * real.x + x[1].w * real.y + x[2].w * real.z);
return detail::tdualquat<T, P>(real, dual);
}
}//namespace glm

View File

@@ -0,0 +1,29 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2013 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///////////////////////////////////////////////////////////////////////////////////
#if(defined(GLM_MESSAGES))
# pragma message("GLM: GLM_GTX_epsilon extension is deprecated, include GLM_GTC_epsilon (glm/gtc/epsilon) instead")
#endif
// Promoted:
#include "../gtc/epsilon.hpp"

View File

@@ -0,0 +1,155 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_euler_angles
/// @file glm/gtx/euler_angles.hpp
/// @date 2005-12-21 / 2011-06-07
/// @author Christophe Riccio
///
/// @see core (dependence)
/// @see gtc_half_float (dependence)
///
/// @defgroup gtx_euler_angles GLM_GTX_euler_angles
/// @ingroup gtx
///
/// @brief Build matrices from Euler angles.
///
/// <glm/gtx/euler_angles.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTX_euler_angles
#define GLM_GTX_euler_angles
// Dependency:
#include "../glm.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTX_euler_angles extension included")
#endif
namespace glm
{
/// @addtogroup gtx_euler_angles
/// @{
/// Creates a 3D 4 * 4 homogeneous rotation matrix from an euler angle X.
/// @see gtx_euler_angles
template <typename T>
GLM_FUNC_DECL detail::tmat4x4<T, defaultp> eulerAngleX(
T const & angleX);
/// Creates a 3D 4 * 4 homogeneous rotation matrix from an euler angle Y.
/// @see gtx_euler_angles
template <typename T>
GLM_FUNC_DECL detail::tmat4x4<T, defaultp> eulerAngleY(
T const & angleY);
/// Creates a 3D 4 * 4 homogeneous rotation matrix from an euler angle Z.
/// @see gtx_euler_angles
template <typename T>
GLM_FUNC_DECL detail::tmat4x4<T, defaultp> eulerAngleZ(
T const & angleZ);
/// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (X * Y).
/// @see gtx_euler_angles
template <typename T>
GLM_FUNC_DECL detail::tmat4x4<T, defaultp> eulerAngleXY(
T const & angleX,
T const & angleY);
/// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (Y * X).
/// @see gtx_euler_angles
template <typename T>
GLM_FUNC_DECL detail::tmat4x4<T, defaultp> eulerAngleYX(
T const & angleY,
T const & angleX);
/// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (X * Z).
/// @see gtx_euler_angles
template <typename T>
GLM_FUNC_DECL detail::tmat4x4<T, defaultp> eulerAngleXZ(
T const & angleX,
T const & angleZ);
/// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (Z * X).
/// @see gtx_euler_angles
template <typename T>
GLM_FUNC_DECL detail::tmat4x4<T, defaultp> eulerAngleZX(
T const & angle,
T const & angleX);
/// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (Y * Z).
/// @see gtx_euler_angles
template <typename T>
GLM_FUNC_DECL detail::tmat4x4<T, defaultp> eulerAngleYZ(
T const & angleY,
T const & angleZ);
/// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (Z * Y).
/// @see gtx_euler_angles
template <typename T>
GLM_FUNC_DECL detail::tmat4x4<T, defaultp> eulerAngleZY(
T const & angleZ,
T const & angleY);
/// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (Y * X * Z).
/// @see gtx_euler_angles
template <typename T>
GLM_FUNC_DECL detail::tmat4x4<T, defaultp> eulerAngleYXZ(
T const & yaw,
T const & pitch,
T const & roll);
/// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (Y * X * Z).
/// @see gtx_euler_angles
template <typename T>
GLM_FUNC_DECL detail::tmat4x4<T, defaultp> yawPitchRoll(
T const & yaw,
T const & pitch,
T const & roll);
/// Creates a 2D 2 * 2 rotation matrix from an euler angle.
/// @see gtx_euler_angles
template <typename T>
GLM_FUNC_DECL detail::tmat2x2<T, defaultp> orientate2(T const & angle);
/// Creates a 2D 4 * 4 homogeneous rotation matrix from an euler angle.
/// @see gtx_euler_angles
template <typename T>
GLM_FUNC_DECL detail::tmat3x3<T, defaultp> orientate3(T const & angle);
/// Creates a 3D 3 * 3 rotation matrix from euler angles (Y * X * Z).
/// @see gtx_euler_angles
template <typename T, precision P>
GLM_FUNC_DECL detail::tmat3x3<T, P> orientate3(detail::tvec3<T, P> const & angles);
/// Creates a 3D 4 * 4 homogeneous rotation matrix from euler angles (Y * X * Z).
/// @see gtx_euler_angles
template <typename T, precision P>
GLM_FUNC_DECL detail::tmat4x4<T, P> orientate4(detail::tvec3<T, P> const & angles);
/// @}
}//namespace glm
#include "euler_angles.inl"
#endif//GLM_GTX_euler_angles

View File

@@ -0,0 +1,264 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2005-12-21
// Updated : 2007-08-14
// Licence : This source is under MIT License
// File : glm/gtx/euler_angles.inl
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace glm
{
template <typename T>
GLM_FUNC_QUALIFIER detail::tmat4x4<T, defaultp> eulerAngleX
(
T const & angleX
)
{
T cosX = glm::cos(angleX);
T sinX = glm::sin(angleX);
return detail::tmat4x4<T, defaultp>(
T(1), T(0), T(0), T(0),
T(0), cosX, sinX, T(0),
T(0),-sinX, cosX, T(0),
T(0), T(0), T(0), T(1));
}
template <typename T>
GLM_FUNC_QUALIFIER detail::tmat4x4<T, defaultp> eulerAngleY
(
T const & angleY
)
{
T cosY = glm::cos(angleY);
T sinY = glm::sin(angleY);
return detail::tmat4x4<T, defaultp>(
cosY, T(0), -sinY, T(0),
T(0), T(1), T(0), T(0),
sinY, T(0), cosY, T(0),
T(0), T(0), T(0), T(1));
}
template <typename T>
GLM_FUNC_QUALIFIER detail::tmat4x4<T, defaultp> eulerAngleZ
(
T const & angleZ
)
{
T cosZ = glm::cos(angleZ);
T sinZ = glm::sin(angleZ);
return detail::tmat4x4<T, defaultp>(
cosZ, sinZ, T(0), T(0),
-sinZ, cosZ, T(0), T(0),
T(0), T(0), T(1), T(0),
T(0), T(0), T(0), T(1));
}
template <typename T>
GLM_FUNC_QUALIFIER detail::tmat4x4<T, defaultp> eulerAngleXY
(
T const & angleX,
T const & angleY
)
{
T cosX = glm::cos(angleX);
T sinX = glm::sin(angleX);
T cosY = glm::cos(angleY);
T sinY = glm::sin(angleY);
return detail::tmat4x4<T, defaultp>(
cosY, -sinX * -sinY, cosX * -sinY, T(0),
T(0), cosX, sinX, T(0),
sinY, -sinX * cosY, cosX * cosY, T(0),
T(0), T(0), T(0), T(1));
}
template <typename T>
GLM_FUNC_QUALIFIER detail::tmat4x4<T, defaultp> eulerAngleYX
(
T const & angleY,
T const & angleX
)
{
T cosX = glm::cos(angleX);
T sinX = glm::sin(angleX);
T cosY = glm::cos(angleY);
T sinY = glm::sin(angleY);
return detail::tmat4x4<T, defaultp>(
cosY, 0, -sinY, T(0),
sinY * sinX, cosX, cosY * sinX, T(0),
sinY * cosX, -sinX, cosY * cosX, T(0),
T(0), T(0), T(0), T(1));
}
template <typename T>
GLM_FUNC_QUALIFIER detail::tmat4x4<T, defaultp> eulerAngleXZ
(
T const & angleX,
T const & angleZ
)
{
return eulerAngleX(angleX) * eulerAngleZ(angleZ);
}
template <typename T>
GLM_FUNC_QUALIFIER detail::tmat4x4<T, defaultp> eulerAngleZX
(
T const & angleZ,
T const & angleX
)
{
return eulerAngleZ(angleZ) * eulerAngleX(angleX);
}
template <typename T>
GLM_FUNC_QUALIFIER detail::tmat4x4<T, defaultp> eulerAngleYZ
(
T const & angleY,
T const & angleZ
)
{
return eulerAngleY(angleY) * eulerAngleZ(angleZ);
}
template <typename T>
GLM_FUNC_QUALIFIER detail::tmat4x4<T, defaultp> eulerAngleZY
(
T const & angleZ,
T const & angleY
)
{
return eulerAngleZ(angleZ) * eulerAngleY(angleY);
}
template <typename T>
GLM_FUNC_QUALIFIER detail::tmat4x4<T, defaultp> eulerAngleYXZ
(
T const & yaw,
T const & pitch,
T const & roll
)
{
T tmp_ch = glm::cos(yaw);
T tmp_sh = glm::sin(yaw);
T tmp_cp = glm::cos(pitch);
T tmp_sp = glm::sin(pitch);
T tmp_cb = glm::cos(roll);
T tmp_sb = glm::sin(roll);
detail::tmat4x4<T, defaultp> Result;
Result[0][0] = tmp_ch * tmp_cb + tmp_sh * tmp_sp * tmp_sb;
Result[0][1] = tmp_sb * tmp_cp;
Result[0][2] = -tmp_sh * tmp_cb + tmp_ch * tmp_sp * tmp_sb;
Result[0][3] = static_cast<T>(0);
Result[1][0] = -tmp_ch * tmp_sb + tmp_sh * tmp_sp * tmp_cb;
Result[1][1] = tmp_cb * tmp_cp;
Result[1][2] = tmp_sb * tmp_sh + tmp_ch * tmp_sp * tmp_cb;
Result[1][3] = static_cast<T>(0);
Result[2][0] = tmp_sh * tmp_cp;
Result[2][1] = -tmp_sp;
Result[2][2] = tmp_ch * tmp_cp;
Result[2][3] = static_cast<T>(0);
Result[3][0] = static_cast<T>(0);
Result[3][1] = static_cast<T>(0);
Result[3][2] = static_cast<T>(0);
Result[3][3] = static_cast<T>(1);
return Result;
}
template <typename T>
GLM_FUNC_QUALIFIER detail::tmat4x4<T, defaultp> yawPitchRoll
(
T const & yaw,
T const & pitch,
T const & roll
)
{
T tmp_ch = glm::cos(yaw);
T tmp_sh = glm::sin(yaw);
T tmp_cp = glm::cos(pitch);
T tmp_sp = glm::sin(pitch);
T tmp_cb = glm::cos(roll);
T tmp_sb = glm::sin(roll);
detail::tmat4x4<T, defaultp> Result;
Result[0][0] = tmp_ch * tmp_cb + tmp_sh * tmp_sp * tmp_sb;
Result[0][1] = tmp_sb * tmp_cp;
Result[0][2] = -tmp_sh * tmp_cb + tmp_ch * tmp_sp * tmp_sb;
Result[0][3] = static_cast<T>(0);
Result[1][0] = -tmp_ch * tmp_sb + tmp_sh * tmp_sp * tmp_cb;
Result[1][1] = tmp_cb * tmp_cp;
Result[1][2] = tmp_sb * tmp_sh + tmp_ch * tmp_sp * tmp_cb;
Result[1][3] = static_cast<T>(0);
Result[2][0] = tmp_sh * tmp_cp;
Result[2][1] = -tmp_sp;
Result[2][2] = tmp_ch * tmp_cp;
Result[2][3] = static_cast<T>(0);
Result[3][0] = static_cast<T>(0);
Result[3][1] = static_cast<T>(0);
Result[3][2] = static_cast<T>(0);
Result[3][3] = static_cast<T>(1);
return Result;
}
template <typename T>
GLM_FUNC_QUALIFIER detail::tmat2x2<T, defaultp> orientate2
(
T const & angle
)
{
T c = glm::cos(angle);
T s = glm::sin(angle);
detail::tmat2x2<T, defaultp> Result;
Result[0][0] = c;
Result[0][1] = s;
Result[1][0] = -s;
Result[1][1] = c;
return Result;
}
template <typename T>
GLM_FUNC_QUALIFIER detail::tmat3x3<T, defaultp> orientate3
(
T const & angle
)
{
T c = glm::cos(angle);
T s = glm::sin(angle);
detail::tmat3x3<T, defaultp> Result;
Result[0][0] = c;
Result[0][1] = s;
Result[0][2] = 0.0f;
Result[1][0] = -s;
Result[1][1] = c;
Result[1][2] = 0.0f;
Result[2][0] = 0.0f;
Result[2][1] = 0.0f;
Result[2][2] = 1.0f;
return Result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tmat3x3<T, P> orientate3
(
detail::tvec3<T, P> const & angles
)
{
return detail::tmat3x3<T, P>(yawPitchRoll(angles.z, angles.x, angles.y));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tmat4x4<T, P> orientate4
(
detail::tvec3<T, P> const & angles
)
{
return yawPitchRoll(angles.z, angles.x, angles.y);
}
}//namespace glm

View File

@@ -0,0 +1,66 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_extend
/// @file glm/gtx/extend.hpp
/// @date 2006-01-07 / 2011-06-07
/// @author Christophe Riccio
///
/// @see core (dependence)
///
/// @defgroup gtx_extend GLM_GTX_extend
/// @ingroup gtx
///
/// @brief Extend a position from a source to a position at a defined length.
///
/// <glm/gtx/extend.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTX_extend
#define GLM_GTX_extend
// Dependency:
#include "../glm.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTX_extend extension included")
#endif
namespace glm
{
/// @addtogroup gtx_extend
/// @{
/// Extends of Length the Origin position using the (Source - Origin) direction.
/// @see gtx_extend
template <typename genType>
GLM_FUNC_DECL genType extend(
genType const & Origin,
genType const & Source,
typename genType::value_type const Length);
/// @}
}//namespace glm
#include "extend.inl"
#endif//GLM_GTX_extend

View File

@@ -0,0 +1,55 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2006-01-07
// Updated : 2008-10-05
// Licence : This source is under MIT License
// File : glm/gtx/extend.inl
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace glm
{
template <typename genType>
GLM_FUNC_QUALIFIER genType extend
(
genType const & Origin,
genType const & Source,
genType const & Distance
)
{
return Origin + (Source - Origin) * Distance;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec2<T, P> extend
(
detail::tvec2<T, P> const & Origin,
detail::tvec2<T, P> const & Source,
T const & Distance
)
{
return Origin + (Source - Origin) * Distance;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<T, P> extend
(
detail::tvec3<T, P> const & Origin,
detail::tvec3<T, P> const & Source,
T const & Distance
)
{
return Origin + (Source - Origin) * Distance;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec4<T, P> extend
(
detail::tvec4<T, P> const & Origin,
detail::tvec4<T, P> const & Source,
T const & Distance
)
{
return Origin + (Source - Origin) * Distance;
}
}//namespace glm

View File

@@ -0,0 +1,161 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_extented_min_max
/// @file glm/gtx/extented_min_max.hpp
/// @date 2007-03-14 / 2011-06-07
/// @author Christophe Riccio
///
/// @see core (dependence)
/// @see gtx_half_float (dependence)
///
/// @defgroup gtx_extented_min_max GLM_GTX_extented_min_max
/// @ingroup gtx
///
/// Min and max functions for 3 to 4 parameters.
///
/// <glm/gtx/extented_min_max.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTX_extented_min_max
#define GLM_GTX_extented_min_max
// Dependency:
#include "../glm.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTX_extented_min_max extension included")
#endif
namespace glm
{
/// @addtogroup gtx_extented_min_max
/// @{
/// Return the minimum component-wise values of 3 inputs
/// @see gtx_extented_min_max
template <typename T>
GLM_FUNC_DECL T min(
T const & x,
T const & y,
T const & z);
/// Return the minimum component-wise values of 3 inputs
/// @see gtx_extented_min_max
template <typename T, template <typename> class C>
GLM_FUNC_DECL C<T> min(
C<T> const & x,
typename C<T>::T const & y,
typename C<T>::T const & z);
/// Return the minimum component-wise values of 3 inputs
/// @see gtx_extented_min_max
template <typename T, template <typename> class C>
GLM_FUNC_DECL C<T> min(
C<T> const & x,
C<T> const & y,
C<T> const & z);
/// Return the minimum component-wise values of 4 inputs
/// @see gtx_extented_min_max
template <typename T>
GLM_FUNC_DECL T min(
T const & x,
T const & y,
T const & z,
T const & w);
/// Return the minimum component-wise values of 4 inputs
/// @see gtx_extented_min_max
template <typename T, template <typename> class C>
GLM_FUNC_DECL C<T> min(
C<T> const & x,
typename C<T>::T const & y,
typename C<T>::T const & z,
typename C<T>::T const & w);
/// Return the minimum component-wise values of 4 inputs
/// @see gtx_extented_min_max
template <typename T, template <typename> class C>
GLM_FUNC_DECL C<T> min(
C<T> const & x,
C<T> const & y,
C<T> const & z,
C<T> const & w);
/// Return the maximum component-wise values of 3 inputs
/// @see gtx_extented_min_max
template <typename T>
GLM_FUNC_DECL T max(
T const & x,
T const & y,
T const & z);
/// Return the maximum component-wise values of 3 inputs
/// @see gtx_extented_min_max
template <typename T, template <typename> class C>
GLM_FUNC_DECL C<T> max(
C<T> const & x,
typename C<T>::T const & y,
typename C<T>::T const & z);
/// Return the maximum component-wise values of 3 inputs
/// @see gtx_extented_min_max
template <typename T, template <typename> class C>
GLM_FUNC_DECL C<T> max(
C<T> const & x,
C<T> const & y,
C<T> const & z);
/// Return the maximum component-wise values of 4 inputs
/// @see gtx_extented_min_max
template <typename T>
GLM_FUNC_DECL T max(
T const & x,
T const & y,
T const & z,
T const & w);
/// Return the maximum component-wise values of 4 inputs
/// @see gtx_extented_min_max
template <typename T, template <typename> class C>
GLM_FUNC_DECL C<T> max(
C<T> const & x,
typename C<T>::T const & y,
typename C<T>::T const & z,
typename C<T>::T const & w);
/// Return the maximum component-wise values of 4 inputs
/// @see gtx_extented_min_max
template <typename T, template <typename> class C>
GLM_FUNC_DECL C<T> max(
C<T> const & x,
C<T> const & y,
C<T> const & z,
C<T> const & w);
/// @}
}//namespace glm
#include "extented_min_max.inl"
#endif//GLM_GTX_extented_min_max

View File

@@ -0,0 +1,146 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2007-03-14
// Updated : 2010-02-19
// Licence : This source is under MIT License
// File : gtx_extented_min_max.inl
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace glm
{
template <typename T>
GLM_FUNC_QUALIFIER T min(
T const & x,
T const & y,
T const & z)
{
return glm::min(glm::min(x, y), z);
}
template <typename T, template <typename> class C>
GLM_FUNC_QUALIFIER C<T> min
(
C<T> const & x,
typename C<T>::T const & y,
typename C<T>::T const & z
)
{
return glm::min(glm::min(x, y), z);
}
template <typename T, template <typename> class C>
GLM_FUNC_QUALIFIER C<T> min
(
C<T> const & x,
C<T> const & y,
C<T> const & z
)
{
return glm::min(glm::min(x, y), z);
}
template <typename T>
GLM_FUNC_QUALIFIER T min
(
T const & x,
T const & y,
T const & z,
T const & w
)
{
return glm::min(glm::min(x, y), glm::min(z, w));
}
template <typename T, template <typename> class C>
GLM_FUNC_QUALIFIER C<T> min
(
C<T> const & x,
typename C<T>::T const & y,
typename C<T>::T const & z,
typename C<T>::T const & w
)
{
return glm::min(glm::min(x, y), glm::min(z, w));
}
template <typename T, template <typename> class C>
GLM_FUNC_QUALIFIER C<T> min
(
C<T> const & x,
C<T> const & y,
C<T> const & z,
C<T> const & w
)
{
return glm::min(glm::min(x, y), glm::min(z, w));
}
template <typename T>
GLM_FUNC_QUALIFIER T max(
T const & x,
T const & y,
T const & z)
{
return glm::max(glm::max(x, y), z);
}
template <typename T, template <typename> class C>
GLM_FUNC_QUALIFIER C<T> max
(
C<T> const & x,
typename C<T>::T const & y,
typename C<T>::T const & z
)
{
return glm::max(glm::max(x, y), z);
}
template <typename T, template <typename> class C>
GLM_FUNC_QUALIFIER C<T> max
(
C<T> const & x,
C<T> const & y,
C<T> const & z
)
{
return glm::max(glm::max(x, y), z);
}
template <typename T>
GLM_FUNC_QUALIFIER T max
(
T const & x,
T const & y,
T const & z,
T const & w
)
{
return glm::max(glm::max(x, y), glm::max(z, w));
}
template <typename T, template <typename> class C>
GLM_FUNC_QUALIFIER C<T> max
(
C<T> const & x,
typename C<T>::T const & y,
typename C<T>::T const & z,
typename C<T>::T const & w
)
{
return glm::max(glm::max(x, y), glm::max(z, w));
}
template <typename T, template <typename> class C>
GLM_FUNC_QUALIFIER C<T> max
(
C<T> const & x,
C<T> const & y,
C<T> const & z,
C<T> const & w
)
{
return glm::max(glm::max(x, y), glm::max(z, w));
}
}//namespace glm

View File

@@ -0,0 +1,98 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_fast_exponential
/// @file glm/gtx/fast_exponential.hpp
/// @date 2006-01-09 / 2011-06-07
/// @author Christophe Riccio
///
/// @see core (dependence)
/// @see gtx_half_float (dependence)
///
/// @defgroup gtx_fast_exponential GLM_GTX_fast_exponential
/// @ingroup gtx
///
/// @brief Fast but less accurate implementations of exponential based functions.
///
/// <glm/gtx/fast_exponential.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTX_fast_exponential
#define GLM_GTX_fast_exponential
// Dependency:
#include "../glm.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTX_fast_exponential extension included")
#endif
namespace glm
{
/// @addtogroup gtx_fast_exponential
/// @{
/// Faster than the common pow function but less accurate.
/// @see gtx_fast_exponential
template <typename genType>
GLM_FUNC_DECL genType fastPow(
genType const & x,
genType const & y);
/// Faster than the common pow function but less accurate.
/// @see gtx_fast_exponential
template <typename genTypeT, typename genTypeU>
GLM_FUNC_DECL genTypeT fastPow(
genTypeT const & x,
genTypeU const & y);
/// Faster than the common exp function but less accurate.
/// @see gtx_fast_exponential
template <typename T>
GLM_FUNC_DECL T fastExp(const T& x);
/// Faster than the common log function but less accurate.
/// @see gtx_fast_exponential
template <typename T>
GLM_FUNC_DECL T fastLog(const T& x);
/// Faster than the common exp2 function but less accurate.
/// @see gtx_fast_exponential
template <typename T>
GLM_FUNC_DECL T fastExp2(const T& x);
/// Faster than the common log2 function but less accurate.
/// @see gtx_fast_exponential
template <typename T>
GLM_FUNC_DECL T fastLog2(const T& x);
/// Faster than the common ln function but less accurate.
/// @see gtx_fast_exponential
template <typename T>
GLM_FUNC_DECL T fastLn(const T& x);
/// @}
}//namespace glm
#include "fast_exponential.inl"
#endif//GLM_GTX_fast_exponential

View File

@@ -0,0 +1,148 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2006-01-09
// Updated : 2006-01-09
// Licence : This source is under MIT License
// File : glm/gtx/fast_exponential.inl
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace glm
{
// fastPow:
template <typename genType>
GLM_FUNC_QUALIFIER genType fastPow(genType const & x, genType const & y)
{
return exp(y * log(x));
}
VECTORIZE_VEC_VEC(fastPow)
template <typename T>
GLM_FUNC_QUALIFIER T fastPow(const T x, int y)
{
T f = static_cast<T>(1);
for(int i = 0; i < y; ++i)
f *= x;
return f;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec2<T, P> fastPow(
const detail::tvec2<T, P>& x,
const detail::tvec2<int, P>& y)
{
return detail::tvec2<T, P>(
fastPow(x.x, y.x),
fastPow(x.y, y.y));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<T, P> fastPow(
const detail::tvec3<T, P>& x,
const detail::tvec3<int, P>& y)
{
return detail::tvec3<T, P>(
fastPow(x.x, y.x),
fastPow(x.y, y.y),
fastPow(x.z, y.z));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec4<T, P> fastPow(
const detail::tvec4<T, P>& x,
const detail::tvec4<int, P>& y)
{
return detail::tvec4<T, P>(
fastPow(x.x, y.x),
fastPow(x.y, y.y),
fastPow(x.z, y.z),
fastPow(x.w, y.w));
}
// fastExp
// Note: This function provides accurate results only for value between -1 and 1, else avoid it.
template <typename T>
GLM_FUNC_QUALIFIER T fastExp(const T x)
{
// This has a better looking and same performance in release mode than the following code. However, in debug mode it's slower.
// return 1.0f + x * (1.0f + x * 0.5f * (1.0f + x * 0.3333333333f * (1.0f + x * 0.25 * (1.0f + x * 0.2f))));
T x2 = x * x;
T x3 = x2 * x;
T x4 = x3 * x;
T x5 = x4 * x;
return T(1) + x + (x2 * T(0.5)) + (x3 * T(0.1666666667)) + (x4 * T(0.041666667)) + (x5 * T(0.008333333333));
}
/* // Try to handle all values of float... but often shower than std::exp, glm::floor and the loop kill the performance
GLM_FUNC_QUALIFIER float fastExp(float x)
{
const float e = 2.718281828f;
const float IntegerPart = floor(x);
const float FloatPart = x - IntegerPart;
float z = 1.f;
for(int i = 0; i < int(IntegerPart); ++i)
z *= e;
const float x2 = FloatPart * FloatPart;
const float x3 = x2 * FloatPart;
const float x4 = x3 * FloatPart;
const float x5 = x4 * FloatPart;
return z * (1.0f + FloatPart + (x2 * 0.5f) + (x3 * 0.1666666667f) + (x4 * 0.041666667f) + (x5 * 0.008333333333f));
}
// Increase accuracy on number bigger that 1 and smaller than -1 but it's not enough for high and negative numbers
GLM_FUNC_QUALIFIER float fastExp(float x)
{
// This has a better looking and same performance in release mode than the following code. However, in debug mode it's slower.
// return 1.0f + x * (1.0f + x * 0.5f * (1.0f + x * 0.3333333333f * (1.0f + x * 0.25 * (1.0f + x * 0.2f))));
float x2 = x * x;
float x3 = x2 * x;
float x4 = x3 * x;
float x5 = x4 * x;
float x6 = x5 * x;
float x7 = x6 * x;
float x8 = x7 * x;
return 1.0f + x + (x2 * 0.5f) + (x3 * 0.1666666667f) + (x4 * 0.041666667f) + (x5 * 0.008333333333f)+ (x6 * 0.00138888888888f) + (x7 * 0.000198412698f) + (x8 * 0.0000248015873f);;
}
*/
VECTORIZE_VEC(fastExp)
// fastLog
template <typename genType>
GLM_FUNC_QUALIFIER genType fastLog(genType const & x)
{
return std::log(x);
}
/* Slower than the VC7.1 function...
GLM_FUNC_QUALIFIER float fastLog(float x)
{
float y1 = (x - 1.0f) / (x + 1.0f);
float y2 = y1 * y1;
return 2.0f * y1 * (1.0f + y2 * (0.3333333333f + y2 * (0.2f + y2 * 0.1428571429f)));
}
*/
VECTORIZE_VEC(fastLog)
//fastExp2, ln2 = 0.69314718055994530941723212145818f
template <typename genType>
GLM_FUNC_QUALIFIER genType fastExp2(genType const & x)
{
return fastExp(0.69314718055994530941723212145818f * x);
}
VECTORIZE_VEC(fastExp2)
// fastLog2, ln2 = 0.69314718055994530941723212145818f
template <typename genType>
GLM_FUNC_QUALIFIER genType fastLog2(genType const & x)
{
return fastLog(x) / 0.69314718055994530941723212145818f;
}
VECTORIZE_VEC(fastLog2)
}//namespace glm

View File

@@ -0,0 +1,90 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_fast_square_root
/// @file glm/gtx/fast_square_root.hpp
/// @date 2006-01-04 / 2011-06-07
/// @author Christophe Riccio
///
/// @see core (dependence)
///
/// @defgroup gtx_fast_square_root GLM_GTX_fast_square_root
/// @ingroup gtx
///
/// @brief Fast but less accurate implementations of square root based functions.
/// - Sqrt optimisation based on Newton's method,
/// www.gamedev.net/community/forums/topic.asp?topic id=139956
///
/// <glm/gtx/fast_square_root.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTX_fast_square_root
#define GLM_GTX_fast_square_root
// Dependency:
#include "../glm.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTX_fast_square_root extension included")
#endif
namespace glm
{
/// @addtogroup gtx_fast_square_root
/// @{
//! Faster than the common sqrt function but less accurate.
//! From GLM_GTX_fast_square_root extension.
template <typename genType>
GLM_FUNC_DECL genType fastSqrt(genType const & x);
//! Faster than the common inversesqrt function but less accurate.
//! From GLM_GTX_fast_square_root extension.
template <typename genType>
GLM_FUNC_DECL genType fastInverseSqrt(genType const & x);
//! Faster than the common inversesqrt function but less accurate.
//! From GLM_GTX_fast_square_root extension.
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> fastInverseSqrt(vecType<T, P> const & x);
//! Faster than the common length function but less accurate.
//! From GLM_GTX_fast_square_root extension.
template <typename genType>
GLM_FUNC_DECL typename genType::value_type fastLength(genType const & x);
//! Faster than the common distance function but less accurate.
//! From GLM_GTX_fast_square_root extension.
template <typename genType>
GLM_FUNC_DECL typename genType::value_type fastDistance(genType const & x, genType const & y);
//! Faster than the common normalize function but less accurate.
//! From GLM_GTX_fast_square_root extension.
template <typename genType>
GLM_FUNC_DECL genType fastNormalize(genType const & x);
/// @}
}// namespace glm
#include "fast_square_root.inl"
#endif//GLM_GTX_fast_square_root

View File

@@ -0,0 +1,180 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2006-01-04
// Updated : 2011-10-14
// Licence : This source is under MIT License
// File : glm/gtx/fast_square_root.inl
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace glm
{
// fastSqrt
template <typename genType>
GLM_FUNC_QUALIFIER genType fastSqrt
(
genType const & x
)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'fastSqrt' only accept floating-point input");
return genType(1) / fastInverseSqrt(x);
}
VECTORIZE_VEC(fastSqrt)
// fastInversesqrt
template <>
GLM_FUNC_QUALIFIER float fastInverseSqrt<float>(float const & x)
{
# ifdef __CUDACC__ // Wordaround for a CUDA compiler bug up to CUDA6
detail::tvec1<T, P> tmp(detail::compute_inversesqrt<detail::tvec1, float, lowp>::call(detail::tvec1<float, lowp>(x)));
return tmp.x;
# else
return detail::compute_inversesqrt<detail::tvec1, float, lowp>::call(detail::tvec1<float, lowp>(x)).x;
# endif
}
template <>
GLM_FUNC_QUALIFIER double fastInverseSqrt<double>(double const & x)
{
# ifdef __CUDACC__ // Wordaround for a CUDA compiler bug up to CUDA6
detail::tvec1<T, P> tmp(detail::compute_inversesqrt<detail::tvec1, double, lowp>::call(detail::tvec1<double, lowp>(x)));
return tmp.x;
# else
return detail::compute_inversesqrt<detail::tvec1, double, lowp>::call(detail::tvec1<double, lowp>(x)).x;
# endif
}
template <template <class, precision> class vecType, typename T, precision P>
GLM_FUNC_QUALIFIER vecType<T, P> fastInverseSqrt
(
vecType<T, P> const & x
)
{
return detail::compute_inversesqrt<vecType, T, P>::call(x);
}
VECTORIZE_VEC(fastInverseSqrt)
// fastLength
template <typename genType>
GLM_FUNC_QUALIFIER genType fastLength
(
genType const & x
)
{
return abs(x);
}
template <typename valType, precision P>
GLM_FUNC_QUALIFIER valType fastLength
(
detail::tvec2<valType, P> const & x
)
{
valType sqr = x.x * x.x + x.y * x.y;
return fastSqrt(sqr);
}
template <typename valType, precision P>
GLM_FUNC_QUALIFIER valType fastLength
(
detail::tvec3<valType, P> const & x
)
{
valType sqr = x.x * x.x + x.y * x.y + x.z * x.z;
return fastSqrt(sqr);
}
template <typename valType, precision P>
GLM_FUNC_QUALIFIER valType fastLength
(
detail::tvec4<valType, P> const & x
)
{
valType sqr = x.x * x.x + x.y * x.y + x.z * x.z + x.w * x.w;
return fastSqrt(sqr);
}
// fastDistance
template <typename genType>
GLM_FUNC_QUALIFIER genType fastDistance
(
genType const & x,
genType const & y
)
{
return fastLength(y - x);
}
template <typename valType, precision P>
GLM_FUNC_QUALIFIER valType fastDistance
(
detail::tvec2<valType, P> const & x,
detail::tvec2<valType, P> const & y
)
{
return fastLength(y - x);
}
template <typename valType, precision P>
GLM_FUNC_QUALIFIER valType fastDistance
(
detail::tvec3<valType, P> const & x,
detail::tvec3<valType, P> const & y
)
{
return fastLength(y - x);
}
template <typename valType, precision P>
GLM_FUNC_QUALIFIER valType fastDistance
(
detail::tvec4<valType, P> const & x,
detail::tvec4<valType, P> const & y
)
{
return fastLength(y - x);
}
// fastNormalize
template <typename genType>
GLM_FUNC_QUALIFIER genType fastNormalize
(
genType const & x
)
{
return x > genType(0) ? genType(1) : -genType(1);
}
template <typename valType, precision P>
GLM_FUNC_QUALIFIER detail::tvec2<valType, P> fastNormalize
(
detail::tvec2<valType, P> const & x
)
{
valType sqr = x.x * x.x + x.y * x.y;
return x * fastInverseSqrt(sqr);
}
template <typename valType, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<valType, P> fastNormalize
(
detail::tvec3<valType, P> const & x
)
{
valType sqr = x.x * x.x + x.y * x.y + x.z * x.z;
return x * fastInverseSqrt(sqr);
}
template <typename valType, precision P>
GLM_FUNC_QUALIFIER detail::tvec4<valType, P> fastNormalize
(
detail::tvec4<valType, P> const & x
)
{
valType sqr = x.x * x.x + x.y * x.y + x.z * x.z + x.w * x.w;
return x * fastInverseSqrt(sqr);
}
}//namespace glm

View File

@@ -0,0 +1,100 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_fast_trigonometry
/// @file glm/gtx/fast_trigonometry.hpp
/// @date 2006-01-08 / 2011-06-07
/// @author Christophe Riccio
///
/// @see core (dependence)
///
/// @defgroup gtx_fast_trigonometry GLM_GTX_fast_trigonometry
/// @ingroup gtx
///
/// @brief Fast but less accurate implementations of trigonometric functions.
///
/// <glm/gtx/fast_trigonometry.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTX_fast_trigonometry
#define GLM_GTX_fast_trigonometry
// Dependency:
#include "../glm.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTX_fast_trigonometry extension included")
#endif
namespace glm
{
/// @addtogroup gtx_fast_trigonometry
/// @{
//! Faster than the common sin function but less accurate.
//! Defined between -2pi and 2pi.
//! From GLM_GTX_fast_trigonometry extension.
template <typename T>
GLM_FUNC_DECL T fastSin(const T& angle);
//! Faster than the common cos function but less accurate.
//! Defined between -2pi and 2pi.
//! From GLM_GTX_fast_trigonometry extension.
template <typename T>
GLM_FUNC_DECL T fastCos(const T& angle);
//! Faster than the common tan function but less accurate.
//! Defined between -2pi and 2pi.
//! From GLM_GTX_fast_trigonometry extension.
template <typename T>
GLM_FUNC_DECL T fastTan(const T& angle);
//! Faster than the common asin function but less accurate.
//! Defined between -2pi and 2pi.
//! From GLM_GTX_fast_trigonometry extension.
template <typename T>
GLM_FUNC_DECL T fastAsin(const T& angle);
//! Faster than the common acos function but less accurate.
//! Defined between -2pi and 2pi.
//! From GLM_GTX_fast_trigonometry extension.
template <typename T>
GLM_FUNC_DECL T fastAcos(const T& angle);
//! Faster than the common atan function but less accurate.
//! Defined between -2pi and 2pi.
//! From GLM_GTX_fast_trigonometry extension.
template <typename T>
GLM_FUNC_DECL T fastAtan(const T& y, const T& x);
//! Faster than the common atan function but less accurate.
//! Defined between -2pi and 2pi.
//! From GLM_GTX_fast_trigonometry extension.
template <typename T>
GLM_FUNC_DECL T fastAtan(const T& angle);
/// @}
}//namespace glm
#include "fast_trigonometry.inl"
#endif//GLM_GTX_fast_trigonometry

View File

@@ -0,0 +1,75 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2006-01-08
// Updated : 2011-10-14
// Licence : This source is under MIT License
// File : glm/gtx/fast_trigonometry.inl
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace glm
{
// sin
template <typename T>
GLM_FUNC_QUALIFIER T fastSin(T const & x)
{
return x - ((x * x * x) / T(6)) + ((x * x * x * x * x) / T(120)) - ((x * x * x * x * x * x * x) / T(5040));
}
VECTORIZE_VEC(fastSin)
// cos
template <typename T>
GLM_FUNC_QUALIFIER T fastCos(T const & x)
{
return T(1) - (x * x * T(0.5)) + (x * x * x * x * T(0.041666666666)) - (x * x * x * x * x * x * T(0.00138888888888));
}
VECTORIZE_VEC(fastCos)
// tan
template <typename T>
GLM_FUNC_QUALIFIER T fastTan(T const & x)
{
return x + (x * x * x * T(0.3333333333)) + (x * x * x * x * x * T(0.1333333333333)) + (x * x * x * x * x * x * x * T(0.0539682539));
}
VECTORIZE_VEC(fastTan)
// asin
template <typename T>
GLM_FUNC_QUALIFIER T fastAsin(T const & x)
{
return x + (x * x * x * T(0.166666667)) + (x * x * x * x * x * T(0.075)) + (x * x * x * x * x * x * x * T(0.0446428571)) + (x * x * x * x * x * x * x * x * x * T(0.0303819444));// + (x * x * x * x * x * x * x * x * x * x * x * T(0.022372159));
}
VECTORIZE_VEC(fastAsin)
// acos
template <typename T>
GLM_FUNC_QUALIFIER T fastAcos(T const & x)
{
return T(1.5707963267948966192313216916398) - fastAsin(x); //(PI / 2)
}
VECTORIZE_VEC(fastAcos)
// atan
template <typename T>
GLM_FUNC_QUALIFIER T fastAtan(T const & y, T const & x)
{
T sgn = sign(y) * sign(x);
return abs(fastAtan(y / x)) * sgn;
}
VECTORIZE_VEC_VEC(fastAtan)
template <typename T>
GLM_FUNC_QUALIFIER T fastAtan(T const & x)
{
return x - (x * x * x * T(0.333333333333)) + (x * x * x * x * x * T(0.2)) - (x * x * x * x * x * x * x * T(0.1428571429)) + (x * x * x * x * x * x * x * x * x * T(0.111111111111)) - (x * x * x * x * x * x * x * x * x * x * x * T(0.0909090909));
}
VECTORIZE_VEC(fastAtan)
}//namespace glm

View File

@@ -0,0 +1,76 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_gradient_paint
/// @file glm/gtx/gradient_paint.hpp
/// @date 2009-03-06 / 2011-06-07
/// @author Christophe Riccio
///
/// @see core (dependence)
/// @see gtx_optimum_pow (dependence)
///
/// @defgroup gtx_gradient_paint GLM_GTX_gradient_paint
/// @ingroup gtx
///
/// @brief Functions that return the color of procedural gradient for specific coordinates.
/// <glm/gtx/gradient_paint.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTX_gradient_paint
#define GLM_GTX_gradient_paint
// Dependency:
#include "../glm.hpp"
#include "../gtx/optimum_pow.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTX_gradient_paint extension included")
#endif
namespace glm
{
/// @addtogroup gtx_gradient_paint
/// @{
/// Return a color from a radial gradient.
/// @see - gtx_gradient_paint
template <typename T, precision P>
GLM_FUNC_DECL T radialGradient(
detail::tvec2<T, P> const & Center,
T const & Radius,
detail::tvec2<T, P> const & Focal,
detail::tvec2<T, P> const & Position);
/// Return a color from a linear gradient.
/// @see - gtx_gradient_paint
template <typename T, precision P>
GLM_FUNC_DECL T linearGradient(
detail::tvec2<T, P> const & Point0,
detail::tvec2<T, P> const & Point1,
detail::tvec2<T, P> const & Position);
/// @}
}// namespace glm
#include "gradient_paint.inl"
#endif//GLM_GTX_gradient_paint

View File

@@ -0,0 +1,43 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2009-03-06
// Updated : 2013-04-09
// Licence : This source is under MIT License
// File : glm/gtx/gradient_paint.inl
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace glm
{
template <typename T, precision P>
GLM_FUNC_QUALIFIER T radialGradient
(
detail::tvec2<T, P> const & Center,
T const & Radius,
detail::tvec2<T, P> const & Focal,
detail::tvec2<T, P> const & Position
)
{
detail::tvec2<T, P> F = Focal - Center;
detail::tvec2<T, P> D = Position - Focal;
T Radius2 = pow2(Radius);
T Fx2 = pow2(F.x);
T Fy2 = pow2(F.y);
T Numerator = (D.x * F.x + D.y * F.y) + sqrt(Radius2 * (pow2(D.x) + pow2(D.y)) - pow2(D.x * F.y - D.y * F.x));
T Denominator = Radius2 - (Fx2 + Fy2);
return Numerator / Denominator;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER T linearGradient
(
detail::tvec2<T, P> const & Point0,
detail::tvec2<T, P> const & Point1,
detail::tvec2<T, P> const & Position
)
{
detail::tvec2<T, P> Dist = Point1 - Point0;
return (Dist.x * (Position.x - Point0.x) + Dist.y * (Position.y - Point0.y)) / glm::dot(Dist, Dist);
}
}//namespace glm

View File

@@ -0,0 +1,74 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_handed_coordinate_space
/// @file glm/gtx/handed_coordinate_space.hpp
/// @date 2005-12-21 / 2011-06-07
/// @author Christophe Riccio
///
/// @see core (dependence)
///
/// @defgroup gtx_handed_coordinate_space GLM_GTX_handed_coordinate_space
/// @ingroup gtx
///
/// @brief To know if a set of three basis vectors defines a right or left-handed coordinate system.
///
/// <glm/gtx/handed_coordinate_system.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTX_handed_coordinate_space
#define GLM_GTX_handed_coordinate_space
// Dependency:
#include "../glm.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTX_handed_coordinate_space extension included")
#endif
namespace glm
{
/// @addtogroup gtx_handed_coordinate_space
/// @{
//! Return if a trihedron right handed or not.
//! From GLM_GTX_handed_coordinate_space extension.
template <typename T, precision P>
GLM_FUNC_DECL bool rightHanded(
detail::tvec3<T, P> const & tangent,
detail::tvec3<T, P> const & binormal,
detail::tvec3<T, P> const & normal);
//! Return if a trihedron left handed or not.
//! From GLM_GTX_handed_coordinate_space extension.
template <typename T, precision P>
GLM_FUNC_DECL bool leftHanded(
detail::tvec3<T, P> const & tangent,
detail::tvec3<T, P> const & binormal,
detail::tvec3<T, P> const & normal);
/// @}
}// namespace glm
#include "handed_coordinate_space.inl"
#endif//GLM_GTX_handed_coordinate_space

View File

@@ -0,0 +1,33 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2005-12-21
// Updated : 2009-02-19
// Licence : This source is under MIT License
// File : glm/gtx/handed_coordinate_space.inl
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace glm
{
template <typename T, precision P>
GLM_FUNC_QUALIFIER bool rightHanded
(
detail::tvec3<T, P> const & tangent,
detail::tvec3<T, P> const & binormal,
detail::tvec3<T, P> const & normal
)
{
return dot(cross(normal, tangent), binormal) > T(0);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER bool leftHanded
(
detail::tvec3<T, P> const & tangent,
detail::tvec3<T, P> const & binormal,
detail::tvec3<T, P> const & normal
)
{
return dot(cross(normal, tangent), binormal) < T(0);
}
}//namespace glm

View File

@@ -0,0 +1,116 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_inertia
/// @file glm/gtx/inertia.hpp
/// @date 2006-04-21 / 2011-06-07
/// @author Christophe Riccio
///
/// @see core (dependence)
/// @see gtx_extented_min_max (dependence)
///
/// @defgroup gtx_inertia GLM_GTX_inertia
/// @ingroup gtx
///
/// @brief Create inertia matrices
///
/// <glm/gtx/inertia.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTX_inertia
#define GLM_GTX_inertia
// Dependency:
#include "../glm.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTX_inertia extension included")
#endif
namespace glm
{
/*
/// @addtogroup gtx_inertia
/// @{
//! Build an inertia matrix for a box.
//! From GLM_GTX_inertia extension.
template <typename T, precision P>
detail::tmat3x3<T, P> boxInertia3(
T const & Mass,
detail::tvec3<T, P> const & Scale);
//! Build an inertia matrix for a box.
//! From GLM_GTX_inertia extension.
template <typename T, precision P>
detail::tmat4x4<T, P> boxInertia4(
T const & Mass,
detail::tvec3<T, P> const & Scale);
//! Build an inertia matrix for a disk.
//! From GLM_GTX_inertia extension.
template <typename T, precision P>
detail::tmat3x3<T, P> diskInertia3(
T const & Mass,
T const & Radius);
//! Build an inertia matrix for a disk.
//! From GLM_GTX_inertia extension.
template <typename T, precision P>
detail::tmat4x4<T, P> diskInertia4(
T const & Mass,
T const & Radius);
//! Build an inertia matrix for a ball.
//! From GLM_GTX_inertia extension.
template <typename T, precision P>
detail::tmat3x3<T, P> ballInertia3(
T const & Mass,
T const & Radius);
//! Build an inertia matrix for a ball.
//! From GLM_GTX_inertia extension.
template <typename T, precision P>
detail::tmat4x4<T, P> ballInertia4(
T const & Mass,
T const & Radius);
//! Build an inertia matrix for a sphere.
//! From GLM_GTX_inertia extension.
template <typename T, precision P>
detail::tmat3x3<T, P> sphereInertia3(
T const & Mass,
T const & Radius);
//! Build an inertia matrix for a sphere.
//! From GLM_GTX_inertia extension.
template <typename T, precision P>
detail::tmat4x4<T, P> sphereInertia4(
T const & Mass,
T const & Radius);
*/
/// @}
}// namespace glm
#include "inertia.inl"
#endif//GLM_GTX_inertia

View File

@@ -0,0 +1,116 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2006-04-21
// Updated : 2006-12-06
// Licence : This source is under MIT License
// File : glm/gtx/inertia.inl
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace glm
{
/*
template <typename T>
GLM_FUNC_QUALIFIER detail::tmat3x3<T, P> boxInertia3
(
T const & Mass,
detail::tvec3<T, P> const & Scale
)
{
detail::tmat3x3<T, P> Result(T(1));
Result[0][0] = (Scale.y * Scale.y + Scale.z * Scale.z) * Mass / T(12);
Result[1][1] = (Scale.x * Scale.x + Scale.z * Scale.z) * Mass / T(12);
Result[2][2] = (Scale.x * Scale.x + Scale.y * Scale.y) * Mass / T(12);
return Result;
}
template <typename T>
GLM_FUNC_QUALIFIER detail::tmat4x4<T, P> boxInertia4
(
T const & Mass,
detail::tvec3<T, P> const & Scale
)
{
detail::tmat4x4<T, P> Result(T(1));
Result[0][0] = (Scale.y * Scale.y + Scale.z * Scale.z) * Mass / T(12);
Result[1][1] = (Scale.x * Scale.x + Scale.z * Scale.z) * Mass / T(12);
Result[2][2] = (Scale.x * Scale.x + Scale.y * Scale.y) * Mass / T(12);
return Result;
}
template <typename T>
GLM_FUNC_QUALIFIER detail::tmat3x3<T, P> diskInertia3
(
T const & Mass,
T const & Radius
)
{
T a = Mass * Radius * Radius / T(2);
detail::tmat3x3<T, P> Result(a);
Result[2][2] *= static_cast<T>(2);
return Result;
}
template <typename T>
GLM_FUNC_QUALIFIER detail::tmat4x4<T, P> diskInertia4
(
T const & Mass,
T const & Radius
)
{
T a = Mass * Radius * Radius / T(2);
detail::tmat4x4<T, P> Result(a);
Result[2][2] *= static_cast<T>(2);
Result[3][3] = static_cast<T>(1);
return Result;
}
template <typename T>
GLM_FUNC_QUALIFIER detail::tmat3x3<T, P> ballInertia3
(
T const & Mass,
T const & Radius
)
{
T a = static_cast<T>(2) * Mass * Radius * Radius / T(5);
return detail::tmat3x3<T, P>(a);
}
template <typename T>
GLM_FUNC_QUALIFIER detail::tmat4x4<T, P> ballInertia4
(
T const & Mass,
T const & Radius
)
{
T a = static_cast<T>(2) * Mass * Radius * Radius / T(5);
detail::tmat4x4<T, P> Result(a);
Result[3][3] = static_cast<T>(1);
return Result;
}
template <typename T>
GLM_FUNC_QUALIFIER detail::tmat3x3<T, P> sphereInertia3
(
T const & Mass,
T const & Radius
)
{
T a = static_cast<T>(2) * Mass * Radius * Radius / T(3);
return detail::tmat3x3<T, P>(a);
}
template <typename T>
GLM_FUNC_QUALIFIER detail::tmat4x4<T, P> sphereInertia4
(
T const & Mass,
T const & Radius
)
{
T a = static_cast<T>(2) * Mass * Radius * Radius / T(3);
detail::tmat4x4<T, P> Result(a);
Result[3][3] = static_cast<T>(1);
return Result;
}
*/
}//namespace glm

View File

@@ -0,0 +1,44 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTX_int_10_10_10_2
#define GLM_GTX_int_10_10_10_2
// Dependency:
#include "../glm.hpp"
#include "../gtx/raw_data.hpp"
#if(defined(GLM_MESSAGES))
# pragma message("GLM: GLM_GTX_int_10_10_10_2 extension is deprecated, include GLM_GTC_packing (glm/gtc/packing.hpp) instead")
#endif
namespace glm
{
//! Deprecated, use packUnorm3x10_1x2 instead.
GLM_DEPRECATED GLM_FUNC_DECL dword uint10_10_10_2_cast(glm::vec4 const & v);
}//namespace glm
#include "int_10_10_10_2.inl"
#endif//GLM_GTX_int_10_10_10_2

View File

@@ -0,0 +1,33 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///////////////////////////////////////////////////////////////////////////////////
namespace glm
{
GLM_FUNC_QUALIFIER dword uint10_10_10_2_cast
(
glm::vec4 const & v
)
{
return dword(uint(v.x * 2047.f) << 0 | uint(v.y * 2047.f) << 10 | uint(v.z * 2047.f) << 20 | uint(v.w * 3.f) << 30);
}
}//namespace glm

View File

@@ -0,0 +1,104 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_integer
/// @file glm/gtx/integer.hpp
/// @date 2005-12-24 / 2011-10-13
/// @author Christophe Riccio
///
/// @see core (dependence)
///
/// @defgroup gtx_integer GLM_GTX_integer
/// @ingroup gtx
///
/// @brief Add support for integer for core functions
///
/// <glm/gtx/integer.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTX_integer
#define GLM_GTX_integer
// Dependency:
#include "../glm.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTX_integer extension included")
#endif
namespace glm
{
/// @addtogroup gtx_integer
/// @{
//! Returns x raised to the y power.
//! From GLM_GTX_integer extension.
GLM_FUNC_DECL int pow(int x, int y);
//! Returns the positive square root of x.
//! From GLM_GTX_integer extension.
GLM_FUNC_DECL int sqrt(int x);
//! Returns the log2 of x. Can be reliably using to compute mipmap count from the texture size.
//! From GLM_GTX_integer extension.
template <typename genIUType>
GLM_FUNC_DECL genIUType log2(genIUType x);
//! Returns the floor log2 of x.
//! From GLM_GTX_integer extension.
GLM_FUNC_DECL unsigned int floor_log2(unsigned int x);
//! Modulus. Returns x - y * floor(x / y) for each component in x using the floating point value y.
//! From GLM_GTX_integer extension.
GLM_FUNC_DECL int mod(int x, int y);
//! Return the factorial value of a number (!12 max, integer only)
//! From GLM_GTX_integer extension.
template <typename genType>
GLM_FUNC_DECL genType factorial(genType const & x);
//! 32bit signed integer.
//! From GLM_GTX_integer extension.
typedef signed int sint;
//! Returns x raised to the y power.
//! From GLM_GTX_integer extension.
GLM_FUNC_DECL uint pow(uint x, uint y);
//! Returns the positive square root of x.
//! From GLM_GTX_integer extension.
GLM_FUNC_DECL uint sqrt(uint x);
//! Modulus. Returns x - y * floor(x / y) for each component in x using the floating point value y.
//! From GLM_GTX_integer extension.
GLM_FUNC_DECL uint mod(uint x, uint y);
//! Returns the number of leading zeros.
//! From GLM_GTX_integer extension.
GLM_FUNC_DECL uint nlz(uint x);
/// @}
}//namespace glm
#include "integer.inl"
#endif//GLM_GTX_integer

View File

@@ -0,0 +1,202 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2005-12-24
// Updated : 2011-10-13
// Licence : This source is under MIT License
// File : glm/gtx/integer.inl
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace glm
{
// pow
GLM_FUNC_QUALIFIER int pow(int x, int y)
{
if(y == 0)
return 1;
int result = x;
for(int i = 1; i < y; ++i)
result *= x;
return result;
}
// sqrt: From Christopher J. Musial, An integer square root, Graphics Gems, 1990, page 387
GLM_FUNC_QUALIFIER int sqrt(int x)
{
if(x <= 1) return x;
int NextTrial = x >> 1;
int CurrentAnswer;
do
{
CurrentAnswer = NextTrial;
NextTrial = (NextTrial + x / NextTrial) >> 1;
} while(NextTrial < CurrentAnswer);
return CurrentAnswer;
}
// Henry Gordon Dietz: http://aggregate.org/MAGIC/
namespace detail
{
GLM_FUNC_QUALIFIER unsigned int ones32(unsigned int x)
{
/* 32-bit recursive reduction using SWAR...
but first step is mapping 2-bit values
into sum of 2 1-bit values in sneaky way
*/
x -= ((x >> 1) & 0x55555555);
x = (((x >> 2) & 0x33333333) + (x & 0x33333333));
x = (((x >> 4) + x) & 0x0f0f0f0f);
x += (x >> 8);
x += (x >> 16);
return(x & 0x0000003f);
}
template <>
struct compute_log2<false>
{
template <typename T>
GLM_FUNC_QUALIFIER T operator() (T const & Value) const
{
#if(GLM_COMPILER & (GLM_COMPILER_VC | GLM_COMPILER_GCC))
return Value <= static_cast<T>(1) ? T(0) : T(32) - nlz(Value - T(1));
#else
return T(32) - nlz(Value - T(1));
#endif
}
};
}//namespace _detail
// Henry Gordon Dietz: http://aggregate.org/MAGIC/
/*
GLM_FUNC_QUALIFIER unsigned int floor_log2(unsigned int x)
{
x |= (x >> 1);
x |= (x >> 2);
x |= (x >> 4);
x |= (x >> 8);
x |= (x >> 16);
return _detail::ones32(x) >> 1;
}
*/
// mod
GLM_FUNC_QUALIFIER int mod(int x, int y)
{
return x - y * (x / y);
}
// factorial (!12 max, integer only)
template <typename genType>
GLM_FUNC_QUALIFIER genType factorial(genType const & x)
{
genType Temp = x;
genType Result;
for(Result = 1; Temp > 1; --Temp)
Result *= Temp;
return Result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec2<T, P> factorial(
detail::tvec2<T, P> const & x)
{
return detail::tvec2<T, P>(
factorial(x.x),
factorial(x.y));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<T, P> factorial(
detail::tvec3<T, P> const & x)
{
return detail::tvec3<T, P>(
factorial(x.x),
factorial(x.y),
factorial(x.z));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec4<T, P> factorial(
detail::tvec4<T, P> const & x)
{
return detail::tvec4<T, P>(
factorial(x.x),
factorial(x.y),
factorial(x.z),
factorial(x.w));
}
GLM_FUNC_QUALIFIER uint pow(uint x, uint y)
{
uint result = x;
for(uint i = 1; i < y; ++i)
result *= x;
return result;
}
GLM_FUNC_QUALIFIER uint sqrt(uint x)
{
if(x <= 1) return x;
uint NextTrial = x >> 1;
uint CurrentAnswer;
do
{
CurrentAnswer = NextTrial;
NextTrial = (NextTrial + x / NextTrial) >> 1;
} while(NextTrial < CurrentAnswer);
return CurrentAnswer;
}
GLM_FUNC_QUALIFIER uint mod(uint x, uint y)
{
return x - y * (x / y);
}
#if(GLM_COMPILER & (GLM_COMPILER_VC | GLM_COMPILER_GCC))
GLM_FUNC_QUALIFIER unsigned int nlz(unsigned int x)
{
return 31u - findMSB(x);
}
#else
// Hackers Delight: http://www.hackersdelight.org/HDcode/nlz.c.txt
GLM_FUNC_QUALIFIER unsigned int nlz(unsigned int x)
{
int y, m, n;
y = -int(x >> 16); // If left half of x is 0,
m = (y >> 16) & 16; // set n = 16. If left half
n = 16 - m; // is nonzero, set n = 0 and
x = x >> m; // shift x right 16.
// Now x is of the form 0000xxxx.
y = x - 0x100; // If positions 8-15 are 0,
m = (y >> 16) & 8; // add 8 to n and shift x left 8.
n = n + m;
x = x << m;
y = x - 0x1000; // If positions 12-15 are 0,
m = (y >> 16) & 4; // add 4 to n and shift x left 4.
n = n + m;
x = x << m;
y = x - 0x4000; // If positions 14-15 are 0,
m = (y >> 16) & 2; // add 2 to n and shift x left 2.
n = n + m;
x = x << m;
y = x >> 14; // Set y = 0, 1, 2, or 3.
m = y & ~(y >> 1); // Set m = 0, 1, 2, or 2 resp.
return unsigned(n + 2 - m);
}
#endif//(GLM_COMPILER)
}//namespace glm

View File

@@ -0,0 +1,111 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_intersect
/// @file glm/gtx/intersect.hpp
/// @date 2007-04-03 / 2011-06-07
/// @author Christophe Riccio
///
/// @see core (dependence)
/// @see gtx_closest_point (dependence)
///
/// @defgroup gtx_intersect GLM_GTX_intersect
/// @ingroup gtx
///
/// @brief Add intersection functions
///
/// <glm/gtx/intersect.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTX_intersect
#define GLM_GTX_intersect
// Dependency:
#include "../glm.hpp"
#include "../gtx/closest_point.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTX_closest_point extension included")
#endif
namespace glm
{
/// @addtogroup gtx_intersect
/// @{
//! Compute the intersection of a ray and a triangle.
//! Ray direction and plane normal must be unit length.
//! From GLM_GTX_intersect extension.
template <typename genType>
GLM_FUNC_DECL bool intersectRayPlane(
genType const & orig, genType const & dir,
genType const & planeOrig, genType const & planeNormal,
typename genType::value_type & intersectionDistance);
//! Compute the intersection of a ray and a triangle.
//! From GLM_GTX_intersect extension.
template <typename genType>
GLM_FUNC_DECL bool intersectRayTriangle(
genType const & orig, genType const & dir,
genType const & vert0, genType const & vert1, genType const & vert2,
genType & baryPosition);
//! Compute the intersection of a line and a triangle.
//! From GLM_GTX_intersect extension.
template <typename genType>
GLM_FUNC_DECL bool intersectLineTriangle(
genType const & orig, genType const & dir,
genType const & vert0, genType const & vert1, genType const & vert2,
genType & position);
//! Compute the intersection distance of a ray and a sphere.
//! The ray direction vector is unit length.
//! From GLM_GTX_intersect extension.
template <typename genType>
GLM_FUNC_DECL bool intersectRaySphere(
genType const & rayStarting, genType const & rayNormalizedDirection,
genType const & sphereCenter, typename genType::value_type const sphereRadiusSquered,
typename genType::value_type & intersectionDistance);
//! Compute the intersection of a ray and a sphere.
//! From GLM_GTX_intersect extension.
template <typename genType>
GLM_FUNC_DECL bool intersectRaySphere(
genType const & rayStarting, genType const & rayNormalizedDirection,
genType const & sphereCenter, const typename genType::value_type sphereRadius,
genType & intersectionPosition, genType & intersectionNormal);
//! Compute the intersection of a line and a sphere.
//! From GLM_GTX_intersect extension
template <typename genType>
GLM_FUNC_DECL bool intersectLineSphere(
genType const & point0, genType const & point1,
genType const & sphereCenter, typename genType::value_type sphereRadius,
genType & intersectionPosition1, genType & intersectionNormal1,
genType & intersectionPosition2 = genType(), genType & intersectionNormal2 = genType());
/// @}
}//namespace glm
#include "intersect.inl"
#endif//GLM_GTX_intersect

View File

@@ -0,0 +1,217 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2007-04-03
// Updated : 2009-01-20
// Licence : This source is under MIT licence
// File : glm/gtx/intersect.inl
///////////////////////////////////////////////////////////////////////////////////////////////////
#include "../geometric.hpp"
#include <cfloat>
#include <limits>
namespace glm
{
template <typename genType>
GLM_FUNC_QUALIFIER bool intersectRayPlane
(
genType const & orig, genType const & dir,
genType const & planeOrig, genType const & planeNormal,
typename genType::value_type & intersectionDistance
)
{
typename genType::value_type d = glm::dot(dir, planeNormal);
typename genType::value_type Epsilon = std::numeric_limits<typename genType::value_type>::epsilon();
if(d < Epsilon)
{
intersectionDistance = glm::dot(planeOrig - orig, planeNormal) / d;
return true;
}
return false;
}
template <typename genType>
GLM_FUNC_QUALIFIER bool intersectRayTriangle
(
genType const & orig, genType const & dir,
genType const & v0, genType const & v1, genType const & v2,
genType & baryPosition
)
{
genType e1 = v1 - v0;
genType e2 = v2 - v0;
genType p = glm::cross(dir, e2);
typename genType::value_type a = glm::dot(e1, p);
typename genType::value_type Epsilon = std::numeric_limits<typename genType::value_type>::epsilon();
if(a < Epsilon)
return false;
typename genType::value_type f = typename genType::value_type(1.0f) / a;
genType s = orig - v0;
baryPosition.x = f * glm::dot(s, p);
if(baryPosition.x < typename genType::value_type(0.0f))
return false;
if(baryPosition.x > typename genType::value_type(1.0f))
return false;
genType q = glm::cross(s, e1);
baryPosition.y = f * glm::dot(dir, q);
if(baryPosition.y < typename genType::value_type(0.0f))
return false;
if(baryPosition.y + baryPosition.x > typename genType::value_type(1.0f))
return false;
baryPosition.z = f * glm::dot(e2, q);
return baryPosition.z >= typename genType::value_type(0.0f);
}
//template <typename genType>
//GLM_FUNC_QUALIFIER bool intersectRayTriangle
//(
// genType const & orig, genType const & dir,
// genType const & vert0, genType const & vert1, genType const & vert2,
// genType & position
//)
//{
// typename genType::value_type Epsilon = std::numeric_limits<typename genType::value_type>::epsilon();
//
// genType edge1 = vert1 - vert0;
// genType edge2 = vert2 - vert0;
//
// genType pvec = cross(dir, edge2);
//
// float det = dot(edge1, pvec);
// if(det < Epsilon)
// return false;
//
// genType tvec = orig - vert0;
//
// position.y = dot(tvec, pvec);
// if (position.y < typename genType::value_type(0) || position.y > det)
// return typename genType::value_type(0);
//
// genType qvec = cross(tvec, edge1);
//
// position.z = dot(dir, qvec);
// if (position.z < typename genType::value_type(0) || position.y + position.z > det)
// return typename genType::value_type(0);
//
// position.x = dot(edge2, qvec);
// position *= typename genType::value_type(1) / det;
//
// return typename genType::value_type(1);
//}
template <typename genType>
GLM_FUNC_QUALIFIER bool intersectLineTriangle
(
genType const & orig, genType const & dir,
genType const & vert0, genType const & vert1, genType const & vert2,
genType & position
)
{
typename genType::value_type Epsilon = std::numeric_limits<typename genType::value_type>::epsilon();
genType edge1 = vert1 - vert0;
genType edge2 = vert2 - vert0;
genType pvec = cross(dir, edge2);
float det = dot(edge1, pvec);
if (det > -Epsilon && det < Epsilon)
return false;
float inv_det = typename genType::value_type(1) / det;
genType tvec = orig - vert0;
position.y = dot(tvec, pvec) * inv_det;
if (position.y < typename genType::value_type(0) || position.y > typename genType::value_type(1))
return false;
genType qvec = cross(tvec, edge1);
position.z = dot(dir, qvec) * inv_det;
if (position.z < typename genType::value_type(0) || position.y + position.z > typename genType::value_type(1))
return false;
position.x = dot(edge2, qvec) * inv_det;
return true;
}
template <typename genType>
GLM_FUNC_QUALIFIER bool intersectRaySphere
(
genType const & rayStarting, genType const & rayNormalizedDirection,
genType const & sphereCenter, const typename genType::value_type sphereRadiusSquered,
typename genType::value_type & intersectionDistance
)
{
typename genType::value_type Epsilon = std::numeric_limits<typename genType::value_type>::epsilon();
genType diff = sphereCenter - rayStarting;
typename genType::value_type t0 = dot(diff, rayNormalizedDirection);
typename genType::value_type dSquared = dot(diff, diff) - t0 * t0;
if( dSquared > sphereRadiusSquered )
{
return false;
}
typename genType::value_type t1 = sqrt( sphereRadiusSquered - dSquared );
intersectionDistance = t0 > t1 + Epsilon ? t0 - t1 : t0 + t1;
return intersectionDistance > Epsilon;
}
template <typename genType>
GLM_FUNC_QUALIFIER bool intersectRaySphere
(
genType const & rayStarting, genType const & rayNormalizedDirection,
genType const & sphereCenter, const typename genType::value_type sphereRadius,
genType & intersectionPosition, genType & intersectionNormal
)
{
typename genType::value_type distance;
if( intersectRaySphere( rayStarting, rayNormalizedDirection, sphereCenter, sphereRadius * sphereRadius, distance ) )
{
intersectionPosition = rayStarting + rayNormalizedDirection * distance;
intersectionNormal = (intersectionPosition - sphereCenter) / sphereRadius;
return true;
}
return false;
}
template <typename genType>
GLM_FUNC_QUALIFIER bool intersectLineSphere
(
genType const & point0, genType const & point1,
genType const & sphereCenter, typename genType::value_type sphereRadius,
genType & intersectionPoint1, genType & intersectionNormal1,
genType & intersectionPoint2, genType & intersectionNormal2
)
{
typename genType::value_type Epsilon = std::numeric_limits<typename genType::value_type>::epsilon();
genType dir = normalize(point1 - point0);
genType diff = sphereCenter - point0;
typename genType::value_type t0 = dot(diff, dir);
typename genType::value_type dSquared = dot(diff, diff) - t0 * t0;
if( dSquared > sphereRadius * sphereRadius )
{
return false;
}
typename genType::value_type t1 = sqrt( sphereRadius * sphereRadius - dSquared );
if( t0 < t1 + Epsilon )
t1 = -t1;
intersectionPoint1 = point0 + dir * (t0 - t1);
intersectionNormal1 = (intersectionPoint1 - sphereCenter) / sphereRadius;
intersectionPoint2 = point0 + dir * (t0 + t1);
intersectionNormal2 = (intersectionPoint2 - sphereCenter) / sphereRadius;
return true;
}
}//namespace glm

226
Research/inc/glm/gtx/io.hpp Normal file
View File

@@ -0,0 +1,226 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2013 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_io
/// @file glm/gtx/io.hpp
/// @date 2013-11-22
/// @author Jan P Springer (regnirpsj@gmail.com)
///
/// @see core (dependence)
/// @see gtc_quaternion (dependence)
///
/// @defgroup gtx_io GLM_GTX_io
/// @ingroup gtx
///
/// @brief std::[w]ostream support for glm types
///
/// std::[w]ostream support for glm types + precision/width/etc. manipulators
/// based on howard hinnant's std::chrono io proposal
/// [http://home.roadrunner.com/~hinnant/bloomington/chrono_io.html]
///
/// <glm/gtx/io.hpp> needs to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTX_io
#define GLM_GTX_io GLM_VERSION
// Dependency:
#include "../glm.hpp"
#include "../gtx/quaternion.hpp"
#if(defined(GLM_MESSAGES) && !defined(glm_ext))
# pragma message("GLM: GLM_GTX_io extension included")
#endif
#include <iosfwd> // std::basic_ostream<> (fwd)
#include <locale> // std::locale, std::locale::facet, std::locale::id
#include <utility> // std::pair<>
namespace glm
{
/// @addtogroup gtx_io
/// @{
namespace io
{
enum order_type { column_major, row_major};
template <typename CTy>
class format_punct : public std::locale::facet
{
typedef CTy char_type;
public:
static std::locale::id id;
bool formatted;
unsigned precision;
unsigned width;
char_type separator;
char_type delim_left;
char_type delim_right;
char_type space;
char_type newline;
order_type order;
explicit format_punct(size_t a = 0);
explicit format_punct(format_punct const&);
};
template <typename CTy, typename CTr = std::char_traits<CTy> >
class basic_state_saver {
public:
explicit basic_state_saver(std::basic_ios<CTy,CTr>&);
~basic_state_saver();
private:
typedef ::std::basic_ios<CTy,CTr> state_type;
typedef typename state_type::char_type char_type;
typedef ::std::ios_base::fmtflags flags_type;
typedef ::std::streamsize streamsize_type;
typedef ::std::locale const locale_type;
state_type& state_;
flags_type flags_;
streamsize_type precision_;
streamsize_type width_;
char_type fill_;
locale_type locale_;
basic_state_saver& operator=(basic_state_saver const&);
};
typedef basic_state_saver<char> state_saver;
typedef basic_state_saver<wchar_t> wstate_saver;
template <typename CTy, typename CTr = std::char_traits<CTy> >
class basic_format_saver
{
public:
explicit basic_format_saver(std::basic_ios<CTy,CTr>&);
~basic_format_saver();
private:
basic_state_saver<CTy> const bss_;
basic_format_saver& operator=(basic_format_saver const&);
};
typedef basic_format_saver<char> format_saver;
typedef basic_format_saver<wchar_t> wformat_saver;
struct precision
{
unsigned value;
explicit precision(unsigned);
};
struct width
{
unsigned value;
explicit width(unsigned);
};
template <typename CTy>
struct delimeter
{
CTy value[3];
explicit delimeter(CTy /* left */, CTy /* right */, CTy /* separator */ = ',');
};
struct order
{
order_type value;
explicit order(order_type);
};
// functions, inlined (inline)
template <typename FTy, typename CTy, typename CTr>
FTy const& get_facet(std::basic_ios<CTy,CTr>&);
template <typename FTy, typename CTy, typename CTr>
std::basic_ios<CTy,CTr>& formatted(std::basic_ios<CTy,CTr>&);
template <typename FTy, typename CTy, typename CTr>
std::basic_ios<CTy,CTr>& unformattet(std::basic_ios<CTy,CTr>&);
template <typename CTy, typename CTr>
std::basic_ostream<CTy, CTr>& operator<<(std::basic_ostream<CTy, CTr>&, precision const&);
template <typename CTy, typename CTr>
std::basic_ostream<CTy, CTr>& operator<<(std::basic_ostream<CTy, CTr>&, width const&);
template <typename CTy, typename CTr>
std::basic_ostream<CTy, CTr>& operator<<(std::basic_ostream<CTy, CTr>&, delimeter<CTy> const&);
template <typename CTy, typename CTr>
std::basic_ostream<CTy, CTr>& operator<<(std::basic_ostream<CTy, CTr>&, order const&);
}//namespace io
namespace detail
{
template <typename CTy, typename CTr, typename T, precision P>
GLM_FUNC_DECL std::basic_ostream<CTy,CTr>& operator<<(std::basic_ostream<CTy,CTr>&, tquat<T,P> const&);
template <typename CTy, typename CTr, typename T, precision P>
GLM_FUNC_DECL std::basic_ostream<CTy,CTr>& operator<<(std::basic_ostream<CTy,CTr>&, tvec2<T,P> const&);
template <typename CTy, typename CTr, typename T, precision P>
GLM_FUNC_DECL std::basic_ostream<CTy,CTr>& operator<<(std::basic_ostream<CTy,CTr>&, tvec3<T,P> const&);
template <typename CTy, typename CTr, typename T, precision P>
GLM_FUNC_DECL std::basic_ostream<CTy,CTr>& operator<<(std::basic_ostream<CTy,CTr>&, tvec4<T,P> const&);
template <typename CTy, typename CTr, typename T, precision P>
GLM_FUNC_DECL std::basic_ostream<CTy,CTr>& operator<<(std::basic_ostream<CTy,CTr>&, tmat2x2<T,P> const&);
template <typename CTy, typename CTr, typename T, precision P>
GLM_FUNC_DECL std::basic_ostream<CTy,CTr>& operator<<(std::basic_ostream<CTy,CTr>&, tmat2x3<T,P> const&);
template <typename CTy, typename CTr, typename T, precision P>
GLM_FUNC_DECL std::basic_ostream<CTy,CTr>& operator<<(std::basic_ostream<CTy,CTr>&, tmat2x4<T,P> const&);
template <typename CTy, typename CTr, typename T, precision P>
GLM_FUNC_DECL std::basic_ostream<CTy,CTr>& operator<<(std::basic_ostream<CTy,CTr>&, tmat3x2<T,P> const&);
template <typename CTy, typename CTr, typename T, precision P>
GLM_FUNC_DECL std::basic_ostream<CTy,CTr>& operator<<(std::basic_ostream<CTy,CTr>&, tmat3x3<T,P> const&);
template <typename CTy, typename CTr, typename T, precision P>
GLM_FUNC_DECL std::basic_ostream<CTy,CTr>& operator<<(std::basic_ostream<CTy,CTr>&, tmat3x4<T,P> const&);
template <typename CTy, typename CTr, typename T, precision P>
GLM_FUNC_DECL std::basic_ostream<CTy,CTr>& operator<<(std::basic_ostream<CTy,CTr>&, tmat4x2<T,P> const&);
template <typename CTy, typename CTr, typename T, precision P>
GLM_FUNC_DECL std::basic_ostream<CTy,CTr>& operator<<(std::basic_ostream<CTy,CTr>&, tmat4x3<T,P> const&);
template <typename CTy, typename CTr, typename T, precision P>
GLM_FUNC_DECL std::basic_ostream<CTy,CTr>& operator<<(std::basic_ostream<CTy,CTr>&, tmat4x4<T,P> const&);
template <typename CTy, typename CTr, typename T, precision P>
GLM_FUNC_DECL std::basic_ostream<CTy,CTr> & operator<<(
std::basic_ostream<CTy,CTr> &,
std::pair<tmat4x4<T,P> const,
tmat4x4<T,P> const> const &);
}//namespace detail
/// @}
}//namespace glm
#include "io.inl"
#endif//GLM_GTX_io

598
Research/inc/glm/gtx/io.inl Normal file
View File

@@ -0,0 +1,598 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2013 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2013-11-22
// Updated : 2013-12-18
// Licence : This source is under MIT License
// File : glm/gtx/inl.inl
///////////////////////////////////////////////////////////////////////////////////////////////////
#include <iomanip> // std::setfill<>, std::fixed, std::setprecision, std::right, std::setw
#include <ostream> // std::basic_ostream<>
namespace glm{
namespace io
{
template <typename CTy>
/* explicit */ GLM_FUNC_QUALIFIER
format_punct<CTy>::format_punct(size_t a)
: std::locale::facet(a),
formatted (true),
precision (3),
width (1 + 4 + 1 + precision),
separator (','),
delim_left ('['),
delim_right (']'),
space (' '),
newline ('\n'),
order (row_major)
{}
template <typename CTy>
/* explicit */ GLM_FUNC_QUALIFIER
format_punct<CTy>::format_punct(format_punct const& a)
: std::locale::facet(0),
formatted (a.formatted),
precision (a.precision),
width (a.width),
separator (a.separator),
delim_left (a.delim_left),
delim_right (a.delim_right),
space (a.space),
newline (a.newline),
order (a.order)
{}
template <typename CTy> std::locale::id format_punct<CTy>::id;
template <typename CTy, typename CTr>
/* explicit */ GLM_FUNC_QUALIFIER basic_state_saver<CTy,CTr>::basic_state_saver(std::basic_ios<CTy,CTr>& a)
: state_ (a),
flags_ (a.flags()),
precision_(a.precision()),
width_ (a.width()),
fill_ (a.fill()),
locale_ (a.getloc())
{}
template <typename CTy, typename CTr>
GLM_FUNC_QUALIFIER basic_state_saver<CTy,CTr>::~basic_state_saver()
{
state_.imbue(locale_);
state_.fill(fill_);
state_.width(width_);
state_.precision(precision_);
state_.flags(flags_);
}
template <typename CTy, typename CTr>
/* explicit */ GLM_FUNC_QUALIFIER basic_format_saver<CTy,CTr>::basic_format_saver(std::basic_ios<CTy,CTr>& a)
: bss_(a)
{
a.imbue(std::locale(a.getloc(), new format_punct<CTy>(get_facet<format_punct<CTy> >(a))));
}
template <typename CTy, typename CTr>
GLM_FUNC_QUALIFIER
basic_format_saver<CTy,CTr>::~basic_format_saver()
{}
/* explicit */ GLM_FUNC_QUALIFIER precision::precision(unsigned a)
: value(a)
{}
/* explicit */ GLM_FUNC_QUALIFIER width::width(unsigned a)
: value(a)
{}
template <typename CTy>
/* explicit */ GLM_FUNC_QUALIFIER delimeter<CTy>::delimeter(CTy a, CTy b, CTy c)
: value()
{
value[0] = a;
value[1] = b;
value[2] = c;
}
/* explicit */ GLM_FUNC_QUALIFIER
order::order(order_type a)
: value(a)
{}
template <typename FTy, typename CTy, typename CTr>
GLM_FUNC_QUALIFIER FTy const& get_facet(std::basic_ios<CTy,CTr>& ios)
{
if (!std::has_facet<FTy>(ios.getloc())) {
ios.imbue(std::locale(ios.getloc(), new FTy));
}
return std::use_facet<FTy>(ios.getloc());
}
template <typename CTy, typename CTr>
GLM_FUNC_QUALIFIER std::basic_ios<CTy,CTr>& formatted(std::basic_ios<CTy,CTr>& ios)
{
const_cast<format_punct<CTy>&>(get_facet<format_punct<CTy> >(ios)).formatted = true;
return ios;
}
template <typename CTy, typename CTr>
GLM_FUNC_QUALIFIER std::basic_ios<CTy,CTr>& unformatted(std::basic_ios<CTy,CTr>& ios)
{
const_cast<format_punct<CTy>&>(get_facet<format_punct<CTy> >(ios)).formatted = false;
return ios;
}
template <typename CTy, typename CTr>
GLM_FUNC_QUALIFIER std::basic_ostream<CTy, CTr>& operator<<(std::basic_ostream<CTy, CTr>& os, precision const& a)
{
const_cast<format_punct<CTy>&>(get_facet<format_punct<CTy> >(os)).precision = a.value;
return os;
}
template <typename CTy, typename CTr>
GLM_FUNC_QUALIFIER std::basic_ostream<CTy, CTr>& operator<<(std::basic_ostream<CTy, CTr>& os, width const& a)
{
const_cast<format_punct<CTy>&>(get_facet<format_punct<CTy> >(os)).width = a.value;
return os;
}
template <typename CTy, typename CTr>
std::basic_ostream<CTy, CTr>& operator<<(std::basic_ostream<CTy, CTr>& os, delimeter<CTy> const& a)
{
format_punct<CTy> & fmt(const_cast<format_punct<CTy>&>(get_facet<format_punct<CTy> >(os)));
fmt.delim_left = a.value[0];
fmt.delim_right = a.value[1];
fmt.separator = a.value[2];
return os;
}
template <typename CTy, typename CTr>
GLM_FUNC_QUALIFIER std::basic_ostream<CTy, CTr>& operator<<(std::basic_ostream<CTy, CTr>& os, order const& a)
{
const_cast<format_punct<CTy>&>(get_facet<format_punct<CTy> >(os)).order = a.value;
return os;
}
} // namespace io
namespace detail
{
template <typename CTy, typename CTr, typename T, precision P>
GLM_FUNC_QUALIFIER std::basic_ostream<CTy,CTr>& operator<<(std::basic_ostream<CTy,CTr>& os, tquat<T,P> const& a)
{
typename std::basic_ostream<CTy,CTr>::sentry const cerberus(os);
if(cerberus)
{
io::format_punct<CTy> const & fmt(io::get_facet<io::format_punct<CTy> >(os));
if(fmt.formatted)
{
io::basic_state_saver<CTy> const bss(os);
os << std::fixed
<< std::right
<< std::setprecision(fmt.precision)
<< std::setfill(fmt.space)
<< fmt.delim_left
<< std::setw(fmt.width) << a.w << fmt.separator
<< std::setw(fmt.width) << a.x << fmt.separator
<< std::setw(fmt.width) << a.y << fmt.separator
<< std::setw(fmt.width) << a.z
<< fmt.delim_right;
}
else
{
os << a.w << fmt.space << a.x << fmt.space << a.y << fmt.space << a.z;
}
}
return os;
}
template <typename CTy, typename CTr, typename T, precision P>
GLM_FUNC_QUALIFIER std::basic_ostream<CTy,CTr>& operator<<(std::basic_ostream<CTy,CTr>& os, tvec2<T,P> const& a)
{
typename std::basic_ostream<CTy,CTr>::sentry const cerberus(os);
if(cerberus)
{
io::format_punct<CTy> const & fmt(io::get_facet<io::format_punct<CTy> >(os));
if(fmt.formatted)
{
io::basic_state_saver<CTy> const bss(os);
os << std::fixed
<< std::right
<< std::setprecision(fmt.precision)
<< std::setfill(fmt.space)
<< fmt.delim_left
<< std::setw(fmt.width) << a.x << fmt.separator
<< std::setw(fmt.width) << a.y
<< fmt.delim_right;
}
else
{
os << a.x << fmt.space << a.y;
}
}
return os;
}
template <typename CTy, typename CTr, typename T, precision P>
GLM_FUNC_QUALIFIER std::basic_ostream<CTy,CTr>& operator<<(std::basic_ostream<CTy,CTr>& os, tvec3<T,P> const& a)
{
typename std::basic_ostream<CTy,CTr>::sentry const cerberus(os);
if(cerberus)
{
io::format_punct<CTy> const & fmt(io::get_facet<io::format_punct<CTy> >(os));
if(fmt.formatted)
{
io::basic_state_saver<CTy> const bss(os);
os << std::fixed
<< std::right
<< std::setprecision(fmt.precision)
<< std::setfill(fmt.space)
<< fmt.delim_left
<< std::setw(fmt.width) << a.x << fmt.separator
<< std::setw(fmt.width) << a.y << fmt.separator
<< std::setw(fmt.width) << a.z
<< fmt.delim_right;
}
else
{
os << a.x << fmt.space << a.y << fmt.space << a.z;
}
}
return os;
}
template <typename CTy, typename CTr, typename T, precision P>
GLM_FUNC_QUALIFIER std::basic_ostream<CTy,CTr>& operator<<(std::basic_ostream<CTy,CTr>& os, tvec4<T,P> const& a)
{
typename std::basic_ostream<CTy,CTr>::sentry const cerberus(os);
if(cerberus)
{
io::format_punct<CTy> const & fmt(io::get_facet<io::format_punct<CTy> >(os));
if(fmt.formatted)
{
io::basic_state_saver<CTy> const bss(os);
os << std::fixed
<< std::right
<< std::setprecision(fmt.precision)
<< std::setfill(fmt.space)
<< fmt.delim_left
<< std::setw(fmt.width) << a.x << fmt.separator
<< std::setw(fmt.width) << a.y << fmt.separator
<< std::setw(fmt.width) << a.z << fmt.separator
<< std::setw(fmt.width) << a.w
<< fmt.delim_right;
}
else
{
os << a.x << fmt.space << a.y << fmt.space << a.z << fmt.space << a.w;
}
}
return os;
}
template <typename CTy, typename CTr, typename T, precision P>
GLM_FUNC_QUALIFIER std::basic_ostream<CTy,CTr>& operator<<(std::basic_ostream<CTy,CTr>& os, tmat2x2<T,P> const& a)
{
typename std::basic_ostream<CTy,CTr>::sentry const cerberus(os);
if(cerberus)
{
io::format_punct<CTy> const & fmt(io::get_facet<io::format_punct<CTy> >(os));
tmat2x2<T,P> m(a);
if(io::row_major == fmt.order)
m = transpose(a);
if(fmt.formatted)
{
os << fmt.newline
<< fmt.delim_left << m[0] << fmt.newline
<< fmt.space << m[1] << fmt.delim_right;
}
else
{
os << m[0] << fmt.space << m[1];
}
}
return os;
}
template <typename CTy, typename CTr, typename T, precision P>
GLM_FUNC_QUALIFIER std::basic_ostream<CTy,CTr>& operator<<(std::basic_ostream<CTy,CTr>& os, tmat2x3<T,P> const& a)
{
typename std::basic_ostream<CTy,CTr>::sentry const cerberus(os);
if(cerberus)
{
io::format_punct<CTy> const & fmt(io::get_facet<io::format_punct<CTy> >(os));
tmat3x2<T,P> m(a);
if(io::row_major == fmt.order)
m = transpose(a);
if(fmt.formatted)
{
os << fmt.newline
<< fmt.delim_left << m[0] << fmt.newline
<< fmt.space << m[1] << fmt.newline
<< fmt.space << m[2] << fmt.delim_right;
}
else
{
os << m[0] << fmt.space << m[1] << fmt.space << m[2];
}
}
return os;
}
template <typename CTy, typename CTr, typename T, precision P>
GLM_FUNC_QUALIFIER std::basic_ostream<CTy,CTr>& operator<<(std::basic_ostream<CTy,CTr>& os, tmat2x4<T,P> const& a)
{
typename std::basic_ostream<CTy,CTr>::sentry const cerberus(os);
if(cerberus)
{
io::format_punct<CTy> const & fmt(io::get_facet<io::format_punct<CTy> >(os));
tmat4x2<T,P> m(a);
if(io::row_major == fmt.order)
m = transpose(a);
if(fmt.formatted)
{
os << fmt.newline
<< fmt.delim_left << m[0] << fmt.newline
<< fmt.space << m[1] << fmt.newline
<< fmt.space << m[2] << fmt.newline
<< fmt.space << m[3] << fmt.delim_right;
}
else
{
os << m[0] << fmt.space << m[1] << fmt.space << m[2] << fmt.space << m[3];
}
}
return os;
}
template <typename CTy, typename CTr, typename T, precision P>
GLM_FUNC_QUALIFIER std::basic_ostream<CTy,CTr>& operator<<(std::basic_ostream<CTy,CTr>& os, tmat3x2<T,P> const& a)
{
typename std::basic_ostream<CTy,CTr>::sentry const cerberus(os);
if(cerberus)
{
io::format_punct<CTy> const & fmt(io::get_facet<io::format_punct<CTy> >(os));
tmat2x3<T,P> m(a);
if(io::row_major == fmt.order)
m = transpose(a);
if(fmt.formatted)
{
os << fmt.newline
<< fmt.delim_left << m[0] << fmt.newline
<< fmt.space << m[1] << fmt.delim_right;
}
else
{
os << m[0] << fmt.space << m[1];
}
}
return os;
}
template <typename CTy, typename CTr, typename T, precision P>
GLM_FUNC_QUALIFIER std::basic_ostream<CTy,CTr>& operator<<(std::basic_ostream<CTy,CTr>& os, tmat3x3<T,P> const& a)
{
typename std::basic_ostream<CTy,CTr>::sentry const cerberus(os);
if(cerberus)
{
io::format_punct<CTy> const & fmt(io::get_facet<io::format_punct<CTy> >(os));
tmat3x3<T,P> m(a);
if(io::row_major == fmt.order)
m = transpose(a);
if(fmt.formatted)
{
os << fmt.newline
<< fmt.delim_left << m[0] << fmt.newline
<< fmt.space << m[1] << fmt.newline
<< fmt.space << m[2] << fmt.delim_right;
}
else
{
os << m[0] << fmt.space << m[1] << fmt.space << m[2];
}
}
return os;
}
template <typename CTy, typename CTr, typename T, precision P>
GLM_FUNC_QUALIFIER std::basic_ostream<CTy,CTr> & operator<<(std::basic_ostream<CTy,CTr>& os, tmat3x4<T,P> const& a)
{
typename std::basic_ostream<CTy,CTr>::sentry const cerberus(os);
if(cerberus)
{
io::format_punct<CTy> const & fmt(io::get_facet<io::format_punct<CTy> >(os));
tmat4x3<T,P> m(a);
if(io::row_major == fmt.order)
m = transpose(a);
if (fmt.formatted)
{
os << fmt.newline
<< fmt.delim_left << m[0] << fmt.newline
<< fmt.space << m[1] << fmt.newline
<< fmt.space << m[2] << fmt.newline
<< fmt.space << m[3] << fmt.delim_right;
}
else
{
os << m[0] << fmt.space << m[1] << fmt.space << m[2] << fmt.space << m[3];
}
}
return os;
}
template <typename CTy, typename CTr, typename T, precision P>
GLM_FUNC_QUALIFIER std::basic_ostream<CTy,CTr> & operator<<(std::basic_ostream<CTy,CTr>& os, tmat4x2<T,P> const& a)
{
typename std::basic_ostream<CTy,CTr>::sentry const cerberus(os);
if(cerberus)
{
io::format_punct<CTy> const & fmt(io::get_facet<io::format_punct<CTy> >(os));
tmat2x4<T,P> m(a);
if(io::row_major == fmt.order)
m = transpose(a);
if (fmt.formatted)
{
os << fmt.newline
<< fmt.delim_left << m[0] << fmt.newline
<< fmt.space << m[1] << fmt.delim_right;
}
else
{
os << m[0] << fmt.space << m[1];
}
}
return os;
}
template <typename CTy, typename CTr, typename T, precision P>
GLM_FUNC_QUALIFIER std::basic_ostream<CTy,CTr> & operator<<(std::basic_ostream<CTy,CTr>& os, tmat4x3<T,P> const& a)
{
typename std::basic_ostream<CTy,CTr>::sentry const cerberus(os);
if(cerberus)
{
io::format_punct<CTy> const & fmt(io::get_facet<io::format_punct<CTy> >(os));
tmat3x4<T,P> m(a);
if(io::row_major == fmt.order)
m = transpose(a);
if(fmt.formatted)
{
os << fmt.newline
<< fmt.delim_left << m[0] << fmt.newline
<< fmt.space << m[1] << fmt.newline
<< fmt.space << m[2] << fmt.delim_right;
}
else
{
os << m[0] << fmt.space << m[1] << fmt.space << m[2];
}
}
return os;
}
template <typename CTy, typename CTr, typename T, precision P>
GLM_FUNC_QUALIFIER std::basic_ostream<CTy,CTr> & operator<<(std::basic_ostream<CTy,CTr>& os, tmat4x4<T,P> const& a)
{
typename std::basic_ostream<CTy,CTr>::sentry const cerberus(os);
if(cerberus)
{
io::format_punct<CTy> const & fmt(io::get_facet<io::format_punct<CTy> >(os));
tmat4x4<T,P> m(a);
if (io::row_major == fmt.order)
m = transpose(a);
if(fmt.formatted)
{
os << fmt.newline
<< fmt.delim_left << m[0] << fmt.newline
<< fmt.space << m[1] << fmt.newline
<< fmt.space << m[2] << fmt.newline
<< fmt.space << m[3] << fmt.delim_right;
}
else
{
os << m[0] << fmt.space << m[1] << fmt.space << m[2] << fmt.space << m[3];
}
}
return os;
}
template <typename CTy, typename CTr, typename T, precision P>
GLM_FUNC_QUALIFIER std::basic_ostream<CTy,CTr>& operator<<(
std::basic_ostream<CTy,CTr> & os,
std::pair<tmat4x4<T,P> const, tmat4x4<T,P> const> const& a)
{
typename std::basic_ostream<CTy,CTr>::sentry const cerberus(os);
if(cerberus)
{
io::format_punct<CTy> const & fmt(io::get_facet<io::format_punct<CTy> >(os));
tmat4x4<T,P> ml(a.first);
tmat4x4<T,P> mr(a.second);
if(io::row_major == fmt.order)
{
ml = transpose(a.first);
mr = transpose(a.second);
}
if(fmt.formatted)
{
CTy const & l(fmt.delim_left);
CTy const & r(fmt.delim_right);
CTy const & s(fmt.space);
os << fmt.newline
<< l << ml[0] << s << s << l << mr[0] << fmt.newline
<< s << ml[1] << s << s << s << mr[1] << fmt.newline
<< s << ml[2] << s << s << s << mr[2] << fmt.newline
<< s << ml[3] << r << s << s << mr[3] << r;
}
else
{
os << ml << fmt.space << mr;
}
}
return os;
}
}//namespace detail
}//namespace glm

View File

@@ -0,0 +1,65 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_log_base
/// @file glm/gtx/log_base.hpp
/// @date 2008-10-24 / 2011-06-07
/// @author Christophe Riccio
///
/// @see core (dependence)
///
/// @defgroup gtx_log_base GLM_GTX_log_base
/// @ingroup gtx
///
/// @brief Logarithm for any base. base can be a vector or a scalar.
///
/// <glm/gtx/log_base.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTX_log_base
#define GLM_GTX_log_base
// Dependency:
#include "../glm.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTX_log_base extension included")
#endif
namespace glm
{
/// @addtogroup gtx_log_base
/// @{
//! Logarithm for any base.
//! From GLM_GTX_log_base.
template <typename genType>
GLM_FUNC_DECL genType log(
genType const & x,
genType const & base);
/// @}
}//namespace glm
#include "log_base.inl"
#endif//GLM_GTX_log_base

View File

@@ -0,0 +1,24 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2008-10-24
// Updated : 2008-10-24
// Licence : This source is under MIT License
// File : glm/gtx/log_base.inl
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace glm
{
template <typename genType>
GLM_FUNC_QUALIFIER genType log(
genType const & x,
genType const & base)
{
assert(x != genType(0));
return glm::log(x) / glm::log(base);
}
VECTORIZE_VEC_SCA(log)
VECTORIZE_VEC_VEC(log)
}//namespace glm

View File

@@ -0,0 +1,71 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_matrix_cross_product
/// @file glm/gtx/matrix_cross_product.hpp
/// @date 2005-12-21 / 2011-06-07
/// @author Christophe Riccio
///
/// @see core (dependence)
/// @see gtx_extented_min_max (dependence)
///
/// @defgroup gtx_matrix_cross_product GLM_GTX_matrix_cross_product
/// @ingroup gtx
///
/// @brief Build cross product matrices
///
/// <glm/gtx/matrix_cross_product.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTX_matrix_cross_product
#define GLM_GTX_matrix_cross_product
// Dependency:
#include "../glm.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTX_matrix_cross_product extension included")
#endif
namespace glm
{
/// @addtogroup gtx_matrix_cross_product
/// @{
//! Build a cross product matrix.
//! From GLM_GTX_matrix_cross_product extension.
template <typename T, precision P>
GLM_FUNC_DECL detail::tmat3x3<T, P> matrixCross3(
detail::tvec3<T, P> const & x);
//! Build a cross product matrix.
//! From GLM_GTX_matrix_cross_product extension.
template <typename T, precision P>
GLM_FUNC_DECL detail::tmat4x4<T, P> matrixCross4(
detail::tvec3<T, P> const & x);
/// @}
}//namespace glm
#include "matrix_cross_product.inl"
#endif//GLM_GTX_matrix_cross_product

View File

@@ -0,0 +1,44 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2005-12-21
// Updated : 2005-12-21
// Licence : This source is under MIT License
// File : glm/gtx/matrix_cross_product.inl
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace glm
{
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tmat3x3<T, P> matrixCross3
(
detail::tvec3<T, P> const & x
)
{
detail::tmat3x3<T, P> Result(T(0));
Result[0][1] = x.z;
Result[1][0] = -x.z;
Result[0][2] = -x.y;
Result[2][0] = x.y;
Result[1][2] = x.x;
Result[2][1] = -x.x;
return Result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tmat4x4<T, P> matrixCross4
(
detail::tvec3<T, P> const & x
)
{
detail::tmat4x4<T, P> Result(T(0));
Result[0][1] = x.z;
Result[1][0] = -x.z;
Result[0][2] = -x.y;
Result[2][0] = x.y;
Result[1][2] = x.x;
Result[2][1] = -x.x;
return Result;
}
}//namespace glm

View File

@@ -0,0 +1,88 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_matrix_interpolation
/// @file glm/gtx/matrix_interpolation.hpp
/// @date 2011-03-05 / 2011-06-07
/// @author Ghenadii Ursachi (the.asteroth@gmail.com)
///
/// @see core (dependence)
///
/// @defgroup gtx_matrix_interpolation GLM_GTX_matrix_interpolation
/// @ingroup gtx
///
/// @brief Allows to directly interpolate two exiciting matrices.
///
/// <glm/gtx/matrix_interpolation.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTX_matrix_interpolation
#define GLM_GTX_matrix_interpolation
// Dependency:
#include "../glm.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTX_matrix_interpolation extension included")
#endif
namespace glm
{
/// @addtogroup gtx_matrix_interpolation
/// @{
/// Get the axis and angle of the rotation from a matrix.
/// From GLM_GTX_matrix_interpolation extension.
template <typename T, precision P>
GLM_FUNC_DECL void axisAngle(
detail::tmat4x4<T, P> const & mat,
detail::tvec3<T, P> & axis,
T & angle);
/// Build a matrix from axis and angle.
/// From GLM_GTX_matrix_interpolation extension.
template <typename T, precision P>
GLM_FUNC_DECL detail::tmat4x4<T, P> axisAngleMatrix(
detail::tvec3<T, P> const & axis,
T const angle);
/// Extracts the rotation part of a matrix.
/// From GLM_GTX_matrix_interpolation extension.
template <typename T, precision P>
GLM_FUNC_DECL detail::tmat4x4<T, P> extractMatrixRotation(
detail::tmat4x4<T, P> const & mat);
/// Build a interpolation of 4 * 4 matrixes.
/// From GLM_GTX_matrix_interpolation extension.
/// Warning! works only with rotation and/or translation matrixes, scale will generate unexpected results.
template <typename T, precision P>
GLM_FUNC_DECL detail::tmat4x4<T, P> interpolate(
detail::tmat4x4<T, P> const & m1,
detail::tmat4x4<T, P> const & m2,
T const delta);
/// @}
}//namespace glm
#include "matrix_interpolation.inl"
#endif//GLM_GTX_matrix_interpolation

View File

@@ -0,0 +1,140 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2011-03-05
// Updated : 2011-03-05
// Licence : This source is under MIT License
// File : glm/gtx/matrix_interpolation.inl
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace glm
{
template <typename T, precision P>
GLM_FUNC_QUALIFIER void axisAngle
(
detail::tmat4x4<T, P> const & mat,
detail::tvec3<T, P> & axis,
T & angle
)
{
T epsilon = (T)0.01;
T epsilon2 = (T)0.1;
if((abs(mat[1][0] - mat[0][1]) < epsilon) && (abs(mat[2][0] - mat[0][2]) < epsilon) && (abs(mat[2][1] - mat[1][2]) < epsilon))
{
if ((abs(mat[1][0] + mat[0][1]) < epsilon2) && (abs(mat[2][0] + mat[0][2]) < epsilon2) && (abs(mat[2][1] + mat[1][2]) < epsilon2) && (abs(mat[0][0] + mat[1][1] + mat[2][2] - (T)3.0) < epsilon2))
{
angle = (T)0.0;
axis.x = (T)1.0;
axis.y = (T)0.0;
axis.z = (T)0.0;
return;
}
angle = static_cast<T>(3.1415926535897932384626433832795);
T xx = (mat[0][0] + (T)1.0) / (T)2.0;
T yy = (mat[1][1] + (T)1.0) / (T)2.0;
T zz = (mat[2][2] + (T)1.0) / (T)2.0;
T xy = (mat[1][0] + mat[0][1]) / (T)4.0;
T xz = (mat[2][0] + mat[0][2]) / (T)4.0;
T yz = (mat[2][1] + mat[1][2]) / (T)4.0;
if((xx > yy) && (xx > zz))
{
if (xx < epsilon) {
axis.x = (T)0.0;
axis.y = (T)0.7071;
axis.z = (T)0.7071;
} else {
axis.x = sqrt(xx);
axis.y = xy / axis.x;
axis.z = xz / axis.x;
}
}
else if (yy > zz)
{
if (yy < epsilon) {
axis.x = (T)0.7071;
axis.y = (T)0.0;
axis.z = (T)0.7071;
} else {
axis.y = sqrt(yy);
axis.x = xy / axis.y;
axis.z = yz / axis.y;
}
}
else
{
if (zz < epsilon) {
axis.x = (T)0.7071;
axis.y = (T)0.7071;
axis.z = (T)0.0;
} else {
axis.z = sqrt(zz);
axis.x = xz / axis.z;
axis.y = yz / axis.z;
}
}
return;
}
T s = sqrt((mat[2][1] - mat[1][2]) * (mat[2][1] - mat[1][2]) + (mat[2][0] - mat[0][2]) * (mat[2][0] - mat[0][2]) + (mat[1][0] - mat[0][1]) * (mat[1][0] - mat[0][1]));
if (glm::abs(s) < T(0.001))
s = (T)1.0;
angle = acos((mat[0][0] + mat[1][1] + mat[2][2] - (T)1.0) / (T)2.0);
axis.x = (mat[1][2] - mat[2][1]) / s;
axis.y = (mat[2][0] - mat[0][2]) / s;
axis.z = (mat[0][1] - mat[1][0]) / s;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tmat4x4<T, P> axisAngleMatrix
(
detail::tvec3<T, P> const & axis,
T const angle
)
{
T c = cos(angle);
T s = sin(angle);
T t = static_cast<T>(1) - c;
detail::tvec3<T, P> n = normalize(axis);
return detail::tmat4x4<T, P>(
t * n.x * n.x + c, t * n.x * n.y + n.z * s, t * n.x * n.z - n.y * s, T(0),
t * n.x * n.y - n.z * s, t * n.y * n.y + c, t * n.y * n.z + n.x * s, T(0),
t * n.x * n.z + n.y * s, t * n.y * n.z - n.x * s, t * n.z * n.z + c, T(0),
T(0), T(0), T(0), T(1)
);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tmat4x4<T, P> extractMatrixRotation
(
detail::tmat4x4<T, P> const & mat
)
{
return detail::tmat4x4<T, P>(
mat[0][0], mat[0][1], mat[0][2], 0.0,
mat[1][0], mat[1][1], mat[1][2], 0.0,
mat[2][0], mat[2][1], mat[2][2], 0.0,
0.0, 0.0, 0.0, 1.0
);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tmat4x4<T, P> interpolate
(
detail::tmat4x4<T, P> const & m1,
detail::tmat4x4<T, P> const & m2,
T const delta
)
{
detail::tmat4x4<T, P> m1rot = extractMatrixRotation(m1);
detail::tmat4x4<T, P> dltRotation = m2 * transpose(m1rot);
detail::tvec3<T, P> dltAxis;
T dltAngle;
axisAngle(dltRotation, dltAxis, dltAngle);
detail::tmat4x4<T, P> out = axisAngleMatrix(dltAxis, dltAngle * delta) * m1rot;
out[3][0] = m1[3][0] + delta * (m2[3][0] - m1[3][0]);
out[3][1] = m1[3][1] + delta * (m2[3][1] - m1[3][1]);
out[3][2] = m1[3][2] + delta * (m2[3][2] - m1[3][2]);
return out;
}
}//namespace glm

View File

@@ -0,0 +1,143 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_matrix_major_storage
/// @file glm/gtx/matrix_major_storage.hpp
/// @date 2006-04-19 / 2011-06-07
/// @author Christophe Riccio
///
/// @see core (dependence)
/// @see gtx_extented_min_max (dependence)
///
/// @defgroup gtx_matrix_major_storage GLM_GTX_matrix_major_storage
/// @ingroup gtx
///
/// @brief Build matrices with specific matrix order, row or column
///
/// <glm/gtx/matrix_major_storage.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTX_matrix_major_storage
#define GLM_GTX_matrix_major_storage
// Dependency:
#include "../glm.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTX_matrix_major_storage extension included")
#endif
namespace glm
{
/// @addtogroup gtx_matrix_major_storage
/// @{
//! Build a row major matrix from row vectors.
//! From GLM_GTX_matrix_major_storage extension.
template <typename T, precision P>
GLM_FUNC_DECL detail::tmat2x2<T, P> rowMajor2(
detail::tvec2<T, P> const & v1,
detail::tvec2<T, P> const & v2);
//! Build a row major matrix from other matrix.
//! From GLM_GTX_matrix_major_storage extension.
template <typename T, precision P>
GLM_FUNC_DECL detail::tmat2x2<T, P> rowMajor2(
detail::tmat2x2<T, P> const & m);
//! Build a row major matrix from row vectors.
//! From GLM_GTX_matrix_major_storage extension.
template <typename T, precision P>
GLM_FUNC_DECL detail::tmat3x3<T, P> rowMajor3(
detail::tvec3<T, P> const & v1,
detail::tvec3<T, P> const & v2,
detail::tvec3<T, P> const & v3);
//! Build a row major matrix from other matrix.
//! From GLM_GTX_matrix_major_storage extension.
template <typename T, precision P>
GLM_FUNC_DECL detail::tmat3x3<T, P> rowMajor3(
detail::tmat3x3<T, P> const & m);
//! Build a row major matrix from row vectors.
//! From GLM_GTX_matrix_major_storage extension.
template <typename T, precision P>
GLM_FUNC_DECL detail::tmat4x4<T, P> rowMajor4(
detail::tvec4<T, P> const & v1,
detail::tvec4<T, P> const & v2,
detail::tvec4<T, P> const & v3,
detail::tvec4<T, P> const & v4);
//! Build a row major matrix from other matrix.
//! From GLM_GTX_matrix_major_storage extension.
template <typename T, precision P>
GLM_FUNC_DECL detail::tmat4x4<T, P> rowMajor4(
detail::tmat4x4<T, P> const & m);
//! Build a column major matrix from column vectors.
//! From GLM_GTX_matrix_major_storage extension.
template <typename T, precision P>
GLM_FUNC_DECL detail::tmat2x2<T, P> colMajor2(
detail::tvec2<T, P> const & v1,
detail::tvec2<T, P> const & v2);
//! Build a column major matrix from other matrix.
//! From GLM_GTX_matrix_major_storage extension.
template <typename T, precision P>
GLM_FUNC_DECL detail::tmat2x2<T, P> colMajor2(
detail::tmat2x2<T, P> const & m);
//! Build a column major matrix from column vectors.
//! From GLM_GTX_matrix_major_storage extension.
template <typename T, precision P>
GLM_FUNC_DECL detail::tmat3x3<T, P> colMajor3(
detail::tvec3<T, P> const & v1,
detail::tvec3<T, P> const & v2,
detail::tvec3<T, P> const & v3);
//! Build a column major matrix from other matrix.
//! From GLM_GTX_matrix_major_storage extension.
template <typename T, precision P>
GLM_FUNC_DECL detail::tmat3x3<T, P> colMajor3(
detail::tmat3x3<T, P> const & m);
//! Build a column major matrix from column vectors.
//! From GLM_GTX_matrix_major_storage extension.
template <typename T, precision P>
GLM_FUNC_DECL detail::tmat4x4<T, P> colMajor4(
detail::tvec4<T, P> const & v1,
detail::tvec4<T, P> const & v2,
detail::tvec4<T, P> const & v3,
detail::tvec4<T, P> const & v4);
//! Build a column major matrix from other matrix.
//! From GLM_GTX_matrix_major_storage extension.
template <typename T, precision P>
GLM_FUNC_DECL detail::tmat4x4<T, P> colMajor4(
detail::tmat4x4<T, P> const & m);
/// @}
}//namespace glm
#include "matrix_major_storage.inl"
#endif//GLM_GTX_matrix_major_storage

View File

@@ -0,0 +1,173 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2006-04-19
// Updated : 2009-02-19
// Licence : This source is under MIT License
// File : glm/gtx/matrix_major_storage.inl
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace glm
{
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tmat2x2<T, P> rowMajor2
(
detail::tvec2<T, P> const & v1,
detail::tvec2<T, P> const & v2
)
{
detail::tmat2x2<T, P> Result;
Result[0][0] = v1.x;
Result[1][0] = v1.y;
Result[0][1] = v2.x;
Result[1][1] = v2.y;
return Result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tmat2x2<T, P> rowMajor2(
const detail::tmat2x2<T, P>& m)
{
detail::tmat2x2<T, P> Result;
Result[0][0] = m[0][0];
Result[0][1] = m[1][0];
Result[1][0] = m[0][1];
Result[1][1] = m[1][1];
return Result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tmat3x3<T, P> rowMajor3(
const detail::tvec3<T, P>& v1,
const detail::tvec3<T, P>& v2,
const detail::tvec3<T, P>& v3)
{
detail::tmat3x3<T, P> Result;
Result[0][0] = v1.x;
Result[1][0] = v1.y;
Result[2][0] = v1.z;
Result[0][1] = v2.x;
Result[1][1] = v2.y;
Result[2][1] = v2.z;
Result[0][2] = v3.x;
Result[1][2] = v3.y;
Result[2][2] = v3.z;
return Result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tmat3x3<T, P> rowMajor3(
const detail::tmat3x3<T, P>& m)
{
detail::tmat3x3<T, P> Result;
Result[0][0] = m[0][0];
Result[0][1] = m[1][0];
Result[0][2] = m[2][0];
Result[1][0] = m[0][1];
Result[1][1] = m[1][1];
Result[1][2] = m[2][1];
Result[2][0] = m[0][2];
Result[2][1] = m[1][2];
Result[2][2] = m[2][2];
return Result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tmat4x4<T, P> rowMajor4(
const detail::tvec4<T, P>& v1,
const detail::tvec4<T, P>& v2,
const detail::tvec4<T, P>& v3,
const detail::tvec4<T, P>& v4)
{
detail::tmat4x4<T, P> Result;
Result[0][0] = v1.x;
Result[1][0] = v1.y;
Result[2][0] = v1.z;
Result[3][0] = v1.w;
Result[0][1] = v2.x;
Result[1][1] = v2.y;
Result[2][1] = v2.z;
Result[3][1] = v2.w;
Result[0][2] = v3.x;
Result[1][2] = v3.y;
Result[2][2] = v3.z;
Result[3][2] = v3.w;
Result[0][3] = v4.x;
Result[1][3] = v4.y;
Result[2][3] = v4.z;
Result[3][3] = v4.w;
return Result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tmat4x4<T, P> rowMajor4(
const detail::tmat4x4<T, P>& m)
{
detail::tmat4x4<T, P> Result;
Result[0][0] = m[0][0];
Result[0][1] = m[1][0];
Result[0][2] = m[2][0];
Result[0][3] = m[3][0];
Result[1][0] = m[0][1];
Result[1][1] = m[1][1];
Result[1][2] = m[2][1];
Result[1][3] = m[3][1];
Result[2][0] = m[0][2];
Result[2][1] = m[1][2];
Result[2][2] = m[2][2];
Result[2][3] = m[3][2];
Result[3][0] = m[0][3];
Result[3][1] = m[1][3];
Result[3][2] = m[2][3];
Result[3][3] = m[3][3];
return Result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tmat2x2<T, P> colMajor2(
const detail::tvec2<T, P>& v1,
const detail::tvec2<T, P>& v2)
{
return detail::tmat2x2<T, P>(v1, v2);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tmat2x2<T, P> colMajor2(
const detail::tmat2x2<T, P>& m)
{
return detail::tmat2x2<T, P>(m);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tmat3x3<T, P> colMajor3(
const detail::tvec3<T, P>& v1,
const detail::tvec3<T, P>& v2,
const detail::tvec3<T, P>& v3)
{
return detail::tmat3x3<T, P>(v1, v2, v3);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tmat3x3<T, P> colMajor3(
const detail::tmat3x3<T, P>& m)
{
return detail::tmat3x3<T, P>(m);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tmat4x4<T, P> colMajor4(
const detail::tvec4<T, P>& v1,
const detail::tvec4<T, P>& v2,
const detail::tvec4<T, P>& v3,
const detail::tvec4<T, P>& v4)
{
return detail::tmat4x4<T, P>(v1, v2, v3, v4);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tmat4x4<T, P> colMajor4(
const detail::tmat4x4<T, P>& m)
{
return detail::tmat4x4<T, P>(m);
}
}//namespace glm

View File

@@ -0,0 +1,112 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_matrix_operation
/// @file glm/gtx/matrix_operation.hpp
/// @date 2009-08-29 / 2011-06-07
/// @author Christophe Riccio
///
/// @see core (dependence)
///
/// @defgroup gtx_matrix_operation GLM_GTX_matrix_operation
/// @ingroup gtx
///
/// @brief Build diagonal matrices from vectors.
///
/// <glm/gtx/matrix_operation.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTX_matrix_operation
#define GLM_GTX_matrix_operation
// Dependency:
#include "../glm.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTX_matrix_operation extension included")
#endif
namespace glm
{
/// @addtogroup gtx_matrix_operation
/// @{
//! Build a diagonal matrix.
//! From GLM_GTX_matrix_operation extension.
template <typename T, precision P>
GLM_FUNC_DECL detail::tmat2x2<T, P> diagonal2x2(
detail::tvec2<T, P> const & v);
//! Build a diagonal matrix.
//! From GLM_GTX_matrix_operation extension.
template <typename T, precision P>
GLM_FUNC_DECL detail::tmat2x3<T, P> diagonal2x3(
detail::tvec2<T, P> const & v);
//! Build a diagonal matrix.
//! From GLM_GTX_matrix_operation extension.
template <typename T, precision P>
GLM_FUNC_DECL detail::tmat2x4<T, P> diagonal2x4(
detail::tvec2<T, P> const & v);
//! Build a diagonal matrix.
//! From GLM_GTX_matrix_operation extension.
template <typename T, precision P>
GLM_FUNC_DECL detail::tmat3x2<T, P> diagonal3x2(
detail::tvec2<T, P> const & v);
//! Build a diagonal matrix.
//! From GLM_GTX_matrix_operation extension.
template <typename T, precision P>
GLM_FUNC_DECL detail::tmat3x3<T, P> diagonal3x3(
detail::tvec3<T, P> const & v);
//! Build a diagonal matrix.
//! From GLM_GTX_matrix_operation extension.
template <typename T, precision P>
GLM_FUNC_DECL detail::tmat3x4<T, P> diagonal3x4(
detail::tvec3<T, P> const & v);
//! Build a diagonal matrix.
//! From GLM_GTX_matrix_operation extension.
template <typename T, precision P>
GLM_FUNC_DECL detail::tmat4x2<T, P> diagonal4x2(
detail::tvec2<T, P> const & v);
//! Build a diagonal matrix.
//! From GLM_GTX_matrix_operation extension.
template <typename T, precision P>
GLM_FUNC_DECL detail::tmat4x3<T, P> diagonal4x3(
detail::tvec3<T, P> const & v);
//! Build a diagonal matrix.
//! From GLM_GTX_matrix_operation extension.
template <typename T, precision P>
GLM_FUNC_DECL detail::tmat4x4<T, P> diagonal4x4(
detail::tvec4<T, P> const & v);
/// @}
}//namespace glm
#include "matrix_operation.inl"
#endif//GLM_GTX_matrix_operation

View File

@@ -0,0 +1,124 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2009-08-29
// Updated : 2009-08-29
// Licence : This source is under MIT License
// File : glm/gtx/matrix_operation.inl
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace glm
{
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tmat2x2<T, P> diagonal2x2
(
detail::tvec2<T, P> const & v
)
{
detail::tmat2x2<T, P> Result(static_cast<T>(1));
Result[0][0] = v[0];
Result[1][1] = v[1];
return Result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tmat2x3<T, P> diagonal2x3
(
detail::tvec2<T, P> const & v
)
{
detail::tmat2x3<T, P> Result(static_cast<T>(1));
Result[0][0] = v[0];
Result[1][1] = v[1];
return Result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tmat2x4<T, P> diagonal2x4
(
detail::tvec2<T, P> const & v
)
{
detail::tmat2x4<T, P> Result(static_cast<T>(1));
Result[0][0] = v[0];
Result[1][1] = v[1];
return Result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tmat3x2<T, P> diagonal3x2
(
detail::tvec2<T, P> const & v
)
{
detail::tmat3x2<T, P> Result(static_cast<T>(1));
Result[0][0] = v[0];
Result[1][1] = v[1];
return Result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tmat3x3<T, P> diagonal3x3
(
detail::tvec3<T, P> const & v
)
{
detail::tmat3x3<T, P> Result(static_cast<T>(1));
Result[0][0] = v[0];
Result[1][1] = v[1];
Result[2][2] = v[2];
return Result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tmat3x4<T, P> diagonal3x4
(
detail::tvec3<T, P> const & v
)
{
detail::tmat3x4<T, P> Result(static_cast<T>(1));
Result[0][0] = v[0];
Result[1][1] = v[1];
Result[2][2] = v[2];
return Result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tmat4x4<T, P> diagonal4x4
(
detail::tvec4<T, P> const & v
)
{
detail::tmat4x4<T, P> Result(static_cast<T>(1));
Result[0][0] = v[0];
Result[1][1] = v[1];
Result[2][2] = v[2];
Result[3][3] = v[3];
return Result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tmat4x3<T, P> diagonal4x3
(
detail::tvec3<T, P> const & v
)
{
detail::tmat4x3<T, P> Result(static_cast<T>(1));
Result[0][0] = v[0];
Result[1][1] = v[1];
Result[2][2] = v[2];
return Result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tmat4x2<T, P> diagonal4x2
(
detail::tvec2<T, P> const & v
)
{
detail::tmat4x2<T, P> Result(static_cast<T>(1));
Result[0][0] = v[0];
Result[1][1] = v[1];
return Result;
}
}//namespace glm

View File

@@ -0,0 +1,101 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_matrix_query
/// @file glm/gtx/matrix_query.hpp
/// @date 2007-03-05 / 2011-08-28
/// @author Christophe Riccio
///
/// @see core (dependence)
/// @see gtx_vector_query (dependence)
///
/// @defgroup gtx_matrix_query GLM_GTX_matrix_query
/// @ingroup gtx
///
/// @brief Query to evaluate matrix properties
///
/// <glm/gtx/matrix_query.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTX_matrix_query
#define GLM_GTX_matrix_query
// Dependency:
#include "../glm.hpp"
#include "../gtx/vector_query.hpp"
#include <limits>
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTX_matrix_query extension included")
#endif
namespace glm
{
/// @addtogroup gtx_matrix_query
/// @{
/// Return whether a matrix a null matrix.
/// From GLM_GTX_matrix_query extension.
template<typename T, precision P>
GLM_FUNC_DECL bool isNull(detail::tmat2x2<T, P> const & m, T const & epsilon);
/// Return whether a matrix a null matrix.
/// From GLM_GTX_matrix_query extension.
template<typename T, precision P>
GLM_FUNC_DECL bool isNull(detail::tmat3x3<T, P> const & m, T const & epsilon);
/// Return whether a matrix is a null matrix.
/// From GLM_GTX_matrix_query extension.
template<typename T, precision P>
GLM_FUNC_DECL bool isNull(detail::tmat4x4<T, P> const & m, T const & epsilon);
/// Return whether a matrix is an identity matrix.
/// From GLM_GTX_matrix_query extension.
template<typename T, precision P, template <typename, precision> class matType>
GLM_FUNC_DECL bool isIdentity(matType<T, P> const & m, T const & epsilon);
/// Return whether a matrix is a normalized matrix.
/// From GLM_GTX_matrix_query extension.
template<typename T, precision P>
GLM_FUNC_DECL bool isNormalized(detail::tmat2x2<T, P> const & m, T const & epsilon);
/// Return whether a matrix is a normalized matrix.
/// From GLM_GTX_matrix_query extension.
template<typename T, precision P>
GLM_FUNC_DECL bool isNormalized(detail::tmat3x3<T, P> const & m, T const & epsilon);
/// Return whether a matrix is a normalized matrix.
/// From GLM_GTX_matrix_query extension.
template<typename T, precision P>
GLM_FUNC_DECL bool isNormalized(detail::tmat4x4<T, P> const & m, T const & epsilon);
/// Return whether a matrix is an orthonormalized matrix.
/// From GLM_GTX_matrix_query extension.
template<typename T, precision P, template <typename, precision> class matType>
GLM_FUNC_DECL bool isOrthogonal(matType<T, P> const & m, T const & epsilon);
/// @}
}//namespace glm
#include "matrix_query.inl"
#endif//GLM_GTX_matrix_query

View File

@@ -0,0 +1,123 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2007-03-05
// Updated : 2007-03-05
// Licence : This source is under MIT License
// File : glm/gtx/matrix_query.inl
///////////////////////////////////////////////////////////////////////////////////////////////////
// Dependency:
// - GLM core
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace glm
{
template<typename T, precision P>
GLM_FUNC_QUALIFIER bool isNull(detail::tmat2x2<T, P> const & m, T const & epsilon)
{
bool result = true;
for(length_t i = 0; result && i < 2 ; ++i)
result = isNull(m[i], epsilon);
return result;
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER bool isNull(detail::tmat3x3<T, P> const & m, T const & epsilon)
{
bool result = true;
for(length_t i = 0; result && i < 3 ; ++i)
result = isNull(m[i], epsilon);
return result;
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER bool isNull(detail::tmat4x4<T, P> const & m, T const & epsilon)
{
bool result = true;
for(length_t i = 0; result && i < 4 ; ++i)
result = isNull(m[i], epsilon);
return result;
}
template<typename T, precision P, template <typename, precision> class matType>
GLM_FUNC_QUALIFIER bool isIdentity(matType<T, P> const & m, T const & epsilon)
{
bool result = true;
for(length_t i(0); result && i < m[0].length(); ++i)
{
for(length_t j(0); result && j < i ; ++j)
result = abs(m[i][j]) <= epsilon;
if(result)
result = abs(m[i][i] - 1) <= epsilon;
for(length_t j(i + 1); result && j < m.length(); ++j)
result = abs(m[i][j]) <= epsilon;
}
return result;
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER bool isNormalized(detail::tmat2x2<T, P> const & m, T const & epsilon)
{
bool result(true);
for(length_t i(0); result && i < m.length(); ++i)
result = isNormalized(m[i], epsilon);
for(length_t i(0); result && i < m.length(); ++i)
{
typename detail::tmat2x2<T, P>::col_type v;
for(length_t j(0); j < m.length(); ++j)
v[j] = m[j][i];
result = isNormalized(v, epsilon);
}
return result;
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER bool isNormalized(detail::tmat3x3<T, P> const & m, T const & epsilon)
{
bool result(true);
for(length_t i(0); result && i < m.length(); ++i)
result = isNormalized(m[i], epsilon);
for(length_t i(0); result && i < m.length(); ++i)
{
typename detail::tmat3x3<T, P>::col_type v;
for(length_t j(0); j < m.length(); ++j)
v[j] = m[j][i];
result = isNormalized(v, epsilon);
}
return result;
}
template<typename T, precision P>
GLM_FUNC_QUALIFIER bool isNormalized(detail::tmat4x4<T, P> const & m, T const & epsilon)
{
bool result(true);
for(length_t i(0); result && i < m.length(); ++i)
result = isNormalized(m[i], epsilon);
for(length_t i(0); result && i < m.length(); ++i)
{
typename detail::tmat4x4<T, P>::col_type v;
for(length_t j(0); j < m.length(); ++j)
v[j] = m[j][i];
result = isNormalized(v, epsilon);
}
return result;
}
template<typename T, precision P, template <typename, precision> class matType>
GLM_FUNC_QUALIFIER bool isOrthogonal(matType<T, P> const & m, T const & epsilon)
{
bool result(true);
for(length_t i(0); result && i < m.length() - 1; ++i)
for(length_t j(i + 1); result && j < m.length(); ++j)
result = areOrthogonal(m[i], m[j], epsilon);
if(result)
{
matType<T, P> tmp = transpose(m);
for(length_t i(0); result && i < m.length() - 1 ; ++i)
for(length_t j(i + 1); result && j < m.length(); ++j)
result = areOrthogonal(tmp[i], tmp[j], epsilon);
}
return result;
}
}//namespace glm

View File

@@ -0,0 +1,105 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_matrix_transform_2d
/// @file glm/gtx/matrix_transform_2d.hpp
/// @date 2014-02-20
/// @author Miguel Ángel Pérez Martínez
///
/// @see core (dependence)
///
/// @defgroup gtx_matrix_transform_2d GLM_GTX_matrix_transform_2d
/// @ingroup gtx
///
/// @brief Defines functions that generate common 2d transformation matrices.
///
/// <glm/gtx/matrix_transform_2d.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTX_matrix_transform_2d
#define GLM_GTX_matrix_transform_2d
// Dependency:
#include "../mat3x3.hpp"
#include "../vec2.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTX_matrix_transform_2d extension included")
#endif
namespace glm
{
/// @addtogroup gtx_matrix_transform_2d
/// @{
/// Builds a translation 3 * 3 matrix created from a vector of 2 components.
///
/// @param m Input matrix multiplied by this translation matrix.
/// @param v Coordinates of a translation vector.
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tmat3x3<T, P> translate(
detail::tmat3x3<T, P> const & m,
detail::tvec2<T, P> const & v);
/// Builds a rotation 3 * 3 matrix created from an angle.
///
/// @param m Input matrix multiplied by this translation matrix.
/// @param angle Rotation angle expressed in radians if GLM_FORCE_RADIANS is defined or degrees otherwise.
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tmat3x3<T, P> rotate(
detail::tmat3x3<T, P> const & m,
T const & angle);
/// Builds a scale 3 * 3 matrix created from a vector of 2 components.
///
/// @param m Input matrix multiplied by this translation matrix.
/// @param v Coordinates of a scale vector.
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tmat3x3<T, P> scale(
detail::tmat3x3<T, P> const & m,
detail::tvec2<T, P> const & v);
/// Builds an horizontal (parallel to the x axis) shear 3 * 3 matrix.
///
/// @param m Input matrix multiplied by this translation matrix.
/// @param y Shear factor.
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tmat3x3<T, P> shearX(
detail::tmat3x3<T, P> const & m,
T const & y);
/// Builds a vertical (parallel to the y axis) shear 3 * 3 matrix.
///
/// @param m Input matrix multiplied by this translation matrix.
/// @param x Shear factor.
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tmat3x3<T, P> shearY(
detail::tmat3x3<T, P> const & m,
T const & x);
/// @}
}//namespace glm
#include "matrix_transform_2d.inl"
#endif//GLM_GTX_matrix_transform_2d

View File

@@ -0,0 +1,97 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_matrix_transform_2d
/// @file glm/gtc/matrix_transform_2d.inl
/// @date 2014-02-20
/// @author Miguel Ángel Pérez Martínez
///////////////////////////////////////////////////////////////////////////////////
#include "../trigonometric.hpp"
namespace glm
{
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tmat3x3<T, P> translate(
detail::tmat3x3<T, P> const & m,
detail::tvec2<T, P> const & v)
{
detail::tmat3x3<T, P> Result(m);
Result[2] = m[0] * v[0] + m[1] * v[1] + m[2];
return Result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tmat3x3<T, P> rotate(
detail::tmat3x3<T, P> const & m,
T const & angle)
{
#ifdef GLM_FORCE_RADIANS
T a = angle;
#else
T a = radians(angle);
#endif
T c = cos(a);
T s = sin(a);
detail::tmat3x3<T, P> Result(detail::tmat3x3<T, P>::_null);
Result[0] = m[0] * c + m[1] * s;
Result[1] = m[0] * -s + m[1] * c;
Result[2] = m[2];
return Result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tmat3x3<T, P> scale(
detail::tmat3x3<T, P> const & m,
detail::tvec2<T, P> const & v)
{
detail::tmat3x3<T, P> Result(detail::tmat3x3<T, P>::_null);
Result[0] = m[0] * v[0];
Result[1] = m[1] * v[1];
Result[2] = m[2];
return Result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tmat3x3<T, P> shearX(
detail::tmat3x3<T, P> const & m,
T const & y)
{
detail::tmat3x3<T, P> Result();
Result[0][1] = y;
return m * Result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tmat3x3<T, P> shearY(
detail::tmat3x3<T, P> const & m,
T const & x)
{
detail::tmat3x3<T, P> Result();
Result[1][0] = x;
return m * Result;
}
}//namespace glm

View File

@@ -0,0 +1,65 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_mixed_product
/// @file glm/gtx/mixed_product.hpp
/// @date 2007-04-03 / 2011-06-07
/// @author Christophe Riccio
///
/// @see core (dependence)
///
/// @defgroup gtx_mixed_product GLM_GTX_mixed_producte
/// @ingroup gtx
///
/// @brief Mixed product of 3 vectors.
///
/// <glm/gtx/mixed_product.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTX_mixed_product
#define GLM_GTX_mixed_product
// Dependency:
#include "../glm.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTX_mixed_product extension included")
#endif
namespace glm
{
/// @addtogroup gtx_mixed_product
/// @{
/// @brief Mixed product of 3 vectors (from GLM_GTX_mixed_product extension)
template <typename T, precision P>
GLM_FUNC_DECL T mixedProduct(
detail::tvec3<T, P> const & v1,
detail::tvec3<T, P> const & v2,
detail::tvec3<T, P> const & v3);
/// @}
}// namespace glm
#include "mixed_product.inl"
#endif//GLM_GTX_mixed_product

View File

@@ -0,0 +1,22 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2007-04-03
// Updated : 2008-09-17
// Licence : This source is under MIT License
// File : glm/gtx/mixed_product.inl
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace glm
{
template <typename T, precision P>
GLM_FUNC_QUALIFIER T mixedProduct
(
detail::tvec3<T, P> const & v1,
detail::tvec3<T, P> const & v2,
detail::tvec3<T, P> const & v3
)
{
return dot(cross(v1, v2), v3);
}
}//namespace glm

View File

@@ -0,0 +1,83 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_multiple
/// @file glm/gtx/multiple.hpp
/// @date 2009-10-26 / 2011-06-07
/// @author Christophe Riccio
///
/// @see core (dependence)
/// @see gtx_extented_min_max (dependence)
///
/// @defgroup gtx_multiple GLM_GTX_multiple
/// @ingroup gtx
///
/// @brief Find the closest number of a number multiple of other number.
///
/// <glm/gtx/multiple.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTX_multiple
#define GLM_GTX_multiple
// Dependency:
#include "../glm.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTX_multiple extension included")
#endif
namespace glm
{
/// @addtogroup gtx_multiple
/// @{
/// Higher multiple number of Source.
///
/// @tparam genType Floating-point or integer scalar or vector types.
/// @param Source
/// @param Multiple Must be a null or positive value
///
/// @see gtx_multiple
template <typename genType>
GLM_FUNC_DECL genType higherMultiple(
genType const & Source,
genType const & Multiple);
/// Lower multiple number of Source.
///
/// @tparam genType Floating-point or integer scalar or vector types.
/// @param Source
/// @param Multiple Must be a null or positive value
///
/// @see gtx_multiple
template <typename genType>
GLM_FUNC_DECL genType lowerMultiple(
genType const & Source,
genType const & Multiple);
/// @}
}//namespace glm
#include "multiple.inl"
#endif//GLM_GTX_multiple

View File

@@ -0,0 +1,152 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2009-10-26
// Updated : 2011-06-07
// Licence : This source is under MIT License
// File : glm/gtx/multiple.inl
///////////////////////////////////////////////////////////////////////////////////////////////////
// Dependency:
// - GLM core
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace glm{
namespace detail
{
template <bool Signed>
struct higherMultiple
{
template <typename genType>
GLM_FUNC_QUALIFIER genType operator()
(
genType const & Source,
genType const & Multiple
)
{
if (Source > genType(0))
{
genType Tmp = Source - genType(1);
return Tmp + (Multiple - (Tmp % Multiple));
}
else
return Source + (-Source % Multiple);
}
};
template <>
struct higherMultiple<false>
{
template <typename genType>
GLM_FUNC_QUALIFIER genType operator()
(
genType const & Source,
genType const & Multiple
)
{
genType Tmp = Source - genType(1);
return Tmp + (Multiple - (Tmp % Multiple));
}
};
}//namespace detail
//////////////////////
// higherMultiple
template <typename genType>
GLM_FUNC_QUALIFIER genType higherMultiple
(
genType const & Source,
genType const & Multiple
)
{
detail::higherMultiple<std::numeric_limits<genType>::is_signed> Compute;
return Compute(Source, Multiple);
}
template <>
GLM_FUNC_QUALIFIER float higherMultiple
(
float const & Source,
float const & Multiple
)
{
if (Source > float(0))
{
float Tmp = Source - float(1);
return Tmp + (Multiple - std::fmod(Tmp, Multiple));
}
else
return Source + std::fmod(-Source, Multiple);
}
template <>
GLM_FUNC_QUALIFIER double higherMultiple
(
double const & Source,
double const & Multiple
)
{
if (Source > double(0))
{
double Tmp = Source - double(1);
return Tmp + (Multiple - std::fmod(Tmp, Multiple));
}
else
return Source + std::fmod(-Source, Multiple);
}
VECTORIZE_VEC_VEC(higherMultiple)
//////////////////////
// lowerMultiple
template <typename genType>
GLM_FUNC_QUALIFIER genType lowerMultiple
(
genType const & Source,
genType const & Multiple
)
{
if (Source >= genType(0))
return Source - Source % Multiple;
else
{
genType Tmp = Source + genType(1);
return Tmp - Tmp % Multiple - Multiple;
}
}
template <>
GLM_FUNC_QUALIFIER float lowerMultiple
(
float const & Source,
float const & Multiple
)
{
if (Source >= float(0))
return Source - std::fmod(Source, Multiple);
else
{
float Tmp = Source + float(1);
return Tmp - std::fmod(Tmp, Multiple) - Multiple;
}
}
template <>
GLM_FUNC_QUALIFIER double lowerMultiple
(
double const & Source,
double const & Multiple
)
{
if (Source >= double(0))
return Source - std::fmod(Source, Multiple);
else
{
double Tmp = Source + double(1);
return Tmp - std::fmod(Tmp, Multiple) - Multiple;
}
}
VECTORIZE_VEC_VEC(lowerMultiple)
}//namespace glm

View File

@@ -0,0 +1,29 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2013 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///////////////////////////////////////////////////////////////////////////////////
#if(defined(GLM_MESSAGES))
# pragma message("GLM: GLM_GTX_random extension is deprecated, include GLM_GTC_random (glm/gtc/noise.hpp) instead")
#endif
// Promoted:
#include "../gtc/noise.hpp"

View File

@@ -0,0 +1,127 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_norm
/// @file glm/gtx/norm.hpp
/// @date 2005-12-21 / 2011-06-07
/// @author Christophe Riccio
///
/// @see core (dependence)
/// @see gtx_quaternion (dependence)
///
/// @defgroup gtx_norm GLM_GTX_norm
/// @ingroup gtx
///
/// @brief Various ways to compute vector norms.
///
/// <glm/gtx/norm.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTX_norm
#define GLM_GTX_norm
// Dependency:
#include "../glm.hpp"
#include "../gtx/quaternion.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTX_norm extension included")
#endif
namespace glm
{
/// @addtogroup gtx_norm
/// @{
//! Returns the squared length of x.
//! From GLM_GTX_norm extension.
template <typename T>
GLM_FUNC_DECL T length2(
T const & x);
//! Returns the squared length of x.
//! From GLM_GTX_norm extension.
template <typename genType>
GLM_FUNC_DECL typename genType::value_type length2(
genType const & x);
//! Returns the squared distance between p0 and p1, i.e., length(p0 - p1).
//! From GLM_GTX_norm extension.
template <typename T>
GLM_FUNC_DECL T distance2(
T const & p0,
T const & p1);
//! Returns the squared distance between p0 and p1, i.e., length(p0 - p1).
//! From GLM_GTX_norm extension.
template <typename genType>
GLM_FUNC_DECL typename genType::value_type distance2(
genType const & p0,
genType const & p1);
//! Returns the L1 norm between x and y.
//! From GLM_GTX_norm extension.
template <typename T, precision P>
GLM_FUNC_DECL T l1Norm(
detail::tvec3<T, P> const & x,
detail::tvec3<T, P> const & y);
//! Returns the L1 norm of v.
//! From GLM_GTX_norm extension.
template <typename T, precision P>
GLM_FUNC_DECL T l1Norm(
detail::tvec3<T, P> const & v);
//! Returns the L2 norm between x and y.
//! From GLM_GTX_norm extension.
template <typename T, precision P>
GLM_FUNC_DECL T l2Norm(
detail::tvec3<T, P> const & x,
detail::tvec3<T, P> const & y);
//! Returns the L2 norm of v.
//! From GLM_GTX_norm extension.
template <typename T, precision P>
GLM_FUNC_DECL T l2Norm(
detail::tvec3<T, P> const & x);
//! Returns the L norm between x and y.
//! From GLM_GTX_norm extension.
template <typename T, precision P>
GLM_FUNC_DECL T lxNorm(
detail::tvec3<T, P> const & x,
detail::tvec3<T, P> const & y,
unsigned int Depth);
//! Returns the L norm of v.
//! From GLM_GTX_norm extension.
template <typename T, precision P>
GLM_FUNC_DECL T lxNorm(
detail::tvec3<T, P> const & x,
unsigned int Depth);
/// @}
}//namespace glm
#include "norm.inl"
#endif//GLM_GTX_norm

View File

@@ -0,0 +1,147 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2005-12-21
// Updated : 2008-07-24
// Licence : This source is under MIT License
// File : glm/gtx/norm.inl
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace glm
{
template <typename T>
GLM_FUNC_QUALIFIER T length2
(
T const & x
)
{
return x * x;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER T length2
(
detail::tvec2<T, P> const & x
)
{
return dot(x, x);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER T length2
(
detail::tvec3<T, P> const & x
)
{
return dot(x, x);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER T length2
(
detail::tvec4<T, P> const & x
)
{
return dot(x, x);
}
template <typename T>
GLM_FUNC_QUALIFIER T distance2
(
T const & p0,
T const & p1
)
{
return length2(p1 - p0);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER T distance2
(
detail::tvec2<T, P> const & p0,
detail::tvec2<T, P> const & p1
)
{
return length2(p1 - p0);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER T distance2
(
detail::tvec3<T, P> const & p0,
detail::tvec3<T, P> const & p1
)
{
return length2(p1 - p0);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER T distance2
(
detail::tvec4<T, P> const & p0,
detail::tvec4<T, P> const & p1
)
{
return length2(p1 - p0);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER T l1Norm
(
detail::tvec3<T, P> const & a,
detail::tvec3<T, P> const & b
)
{
return abs(b.x - a.x) + abs(b.y - a.y) + abs(b.z - a.z);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER T l1Norm
(
detail::tvec3<T, P> const & v
)
{
return abs(v.x) + abs(v.y) + abs(v.z);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER T l2Norm
(
detail::tvec3<T, P> const & a,
detail::tvec3<T, P> const & b
)
{
return length(b - a);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER T l2Norm
(
detail::tvec3<T, P> const & v
)
{
return length(v);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER T lxNorm
(
detail::tvec3<T, P> const & x,
detail::tvec3<T, P> const & y,
unsigned int Depth
)
{
return pow(pow(y.x - x.x, T(Depth)) + pow(y.y - x.y, T(Depth)) + pow(y.z - x.z, T(Depth)), T(1) / T(Depth));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER T lxNorm
(
detail::tvec3<T, P> const & v,
unsigned int Depth
)
{
return pow(pow(v.x, T(Depth)) + pow(v.y, T(Depth)) + pow(v.z, T(Depth)), T(1) / T(Depth));
}
}//namespace glm

View File

@@ -0,0 +1,67 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_normal
/// @file glm/gtx/normal.hpp
/// @date 2005-12-21 / 2011-06-07
/// @author Christophe Riccio
///
/// @see core (dependence)
/// @see gtx_extented_min_max (dependence)
///
/// @defgroup gtx_normal GLM_GTX_normal
/// @ingroup gtx
///
/// @brief Compute the normal of a triangle.
///
/// <glm/gtx/normal.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTX_normal
#define GLM_GTX_normal
// Dependency:
#include "../glm.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTX_normal extension included")
#endif
namespace glm
{
/// @addtogroup gtx_normal
/// @{
//! Computes triangle normal from triangle points.
//! From GLM_GTX_normal extension.
template <typename T, precision P>
GLM_FUNC_DECL detail::tvec3<T, P> triangleNormal(
detail::tvec3<T, P> const & p1,
detail::tvec3<T, P> const & p2,
detail::tvec3<T, P> const & p3);
/// @}
}//namespace glm
#include "normal.inl"
#endif//GLM_GTX_normal

View File

@@ -0,0 +1,22 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2005-12-21
// Updated : 2011-06-07
// Licence : This source is under MIT License
// File : glm/gtx/normal.inl
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace glm
{
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<T, P> triangleNormal
(
detail::tvec3<T, P> const & p1,
detail::tvec3<T, P> const & p2,
detail::tvec3<T, P> const & p3
)
{
return normalize(cross(p1 - p2, p1 - p3));
}
}//namespace glm

View File

@@ -0,0 +1,76 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_normalize_dot
/// @file glm/gtx/normalize_dot.hpp
/// @date 2007-09-28 / 2011-06-07
/// @author Christophe Riccio
///
/// @see core (dependence)
/// @see gtx_fast_square_root (dependence)
///
/// @defgroup gtx_normalize_dot GLM_GTX_normalize_dot
/// @ingroup gtx
///
/// @brief Dot product of vectors that need to be normalize with a single square root.
///
/// <glm/gtx/normalized_dot.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTX_normalize_dot
#define GLM_GTX_normalize_dot
// Dependency:
#include "../glm.hpp"
#include "../gtx/fast_square_root.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTX_normalize_dot extension included")
#endif
namespace glm
{
/// @addtogroup gtx_normalize_dot
/// @{
//! Normalize parameters and returns the dot product of x and y.
//! It's faster that dot(normalize(x), normalize(y)).
//! From GLM_GTX_normalize_dot extension.
template <typename genType>
GLM_FUNC_DECL typename genType::value_type normalizeDot(
genType const & x,
genType const & y);
//! Normalize parameters and returns the dot product of x and y.
//! Faster that dot(fastNormalize(x), fastNormalize(y)).
//! From GLM_GTX_normalize_dot extension.
template <typename genType>
GLM_FUNC_DECL typename genType::value_type fastNormalizeDot(
genType const & x,
genType const & y);
/// @}
}//namespace glm
#include "normalize_dot.inl"
#endif//GLM_GTX_normalize_dot

View File

@@ -0,0 +1,115 @@
//////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
//////////////////////////////////////////////////////////////////////////////////
// Created : 2007-09-28
// Updated : 2008-10-07
// Licence : This source is under MIT License
// File : glm/gtx/normalize_dot.inl
//////////////////////////////////////////////////////////////////////////////////
namespace glm
{
template <typename genType>
GLM_FUNC_QUALIFIER genType normalizeDot
(
genType const & x,
genType const & y
)
{
return
glm::dot(x, y) *
glm::inversesqrt(glm::dot(x, x) *
glm::dot(y, y));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER T normalizeDot
(
detail::tvec2<T, P> const & x,
detail::tvec2<T, P> const & y
)
{
return
glm::dot(x, y) *
glm::inversesqrt(glm::dot(x, x) *
glm::dot(y, y));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER T normalizeDot
(
detail::tvec3<T, P> const & x,
detail::tvec3<T, P> const & y
)
{
return
glm::dot(x, y) *
glm::inversesqrt(glm::dot(x, x) *
glm::dot(y, y));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER T normalizeDot
(
detail::tvec4<T, P> const & x,
detail::tvec4<T, P> const & y
)
{
return
glm::dot(x, y) *
glm::inversesqrt(glm::dot(x, x) *
glm::dot(y, y));
}
template <typename genType>
GLM_FUNC_QUALIFIER genType fastNormalizeDot
(
genType const & x,
genType const & y
)
{
return
glm::dot(x, y) *
fastInverseSqrt(glm::dot(x, x) *
glm::dot(y, y));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER T fastNormalizeDot
(
detail::tvec2<T, P> const & x,
detail::tvec2<T, P> const & y
)
{
return
glm::dot(x, y) *
fastInverseSqrt(glm::dot(x, x) *
glm::dot(y, y));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER T fastNormalizeDot
(
detail::tvec3<T, P> const & x,
detail::tvec3<T, P> const & y
)
{
return
glm::dot(x, y) *
fastInverseSqrt(glm::dot(x, x) *
glm::dot(y, y));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER T fastNormalizeDot
(
detail::tvec4<T, P> const & x,
detail::tvec4<T, P> const & y
)
{
return
glm::dot(x, y) *
fastInverseSqrt(glm::dot(x, x) *
glm::dot(y, y));
}
}//namespace glm

View File

@@ -0,0 +1,85 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_number_precision
/// @file glm/gtx/number_precision.hpp
/// @date 2007-05-10 / 2011-06-07
/// @author Christophe Riccio
///
/// @see core (dependence)
/// @see gtc_type_precision (dependence)
/// @see gtc_quaternion (dependence)
///
/// @defgroup gtx_number_precision GLM_GTX_number_precision
/// @ingroup gtx
///
/// @brief Defined size types.
///
/// <glm/gtx/number_precision.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTX_number_precision
#define GLM_GTX_number_precision
// Dependency:
#include "../glm.hpp"
#include "../gtc/type_precision.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTX_number_precision extension included")
#endif
namespace glm{
namespace gtx
{
/////////////////////////////
// Unsigned int vector types
/// @addtogroup gtx_number_precision
/// @{
typedef u8 u8vec1; //!< \brief 8bit unsigned integer scalar. (from GLM_GTX_number_precision extension)
typedef u16 u16vec1; //!< \brief 16bit unsigned integer scalar. (from GLM_GTX_number_precision extension)
typedef u32 u32vec1; //!< \brief 32bit unsigned integer scalar. (from GLM_GTX_number_precision extension)
typedef u64 u64vec1; //!< \brief 64bit unsigned integer scalar. (from GLM_GTX_number_precision extension)
//////////////////////
// Float vector types
typedef f32 f32vec1; //!< \brief Single-precision floating-point scalar. (from GLM_GTX_number_precision extension)
typedef f64 f64vec1; //!< \brief Single-precision floating-point scalar. (from GLM_GTX_number_precision extension)
//////////////////////
// Float matrix types
typedef f32 f32mat1; //!< \brief Single-precision floating-point scalar. (from GLM_GTX_number_precision extension)
typedef f32 f32mat1x1; //!< \brief Single-precision floating-point scalar. (from GLM_GTX_number_precision extension)
typedef f64 f64mat1; //!< \brief Double-precision floating-point scalar. (from GLM_GTX_number_precision extension)
typedef f64 f64mat1x1; //!< \brief Double-precision floating-point scalar. (from GLM_GTX_number_precision extension)
/// @}
}//namespace gtx
}//namespace glm
#include "number_precision.inl"
#endif//GLM_GTX_number_precision

View File

@@ -0,0 +1,13 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2007-05-10
// Updated : 2007-05-10
// Licence : This source is under MIT License
// File : glm/gtx/number_precision.inl
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace glm
{
}

View File

@@ -0,0 +1,94 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_optimum_pow
/// @file glm/gtx/optimum_pow.hpp
/// @date 2005-12-21 / 2011-06-07
/// @author Christophe Riccio
///
/// @see core (dependence)
///
/// @defgroup gtx_optimum_pow GLM_GTX_optimum_pow
/// @ingroup gtx
///
/// @brief Integer exponentiation of power functions.
///
/// <glm/gtx/optimum_pow.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTX_optimum_pow
#define GLM_GTX_optimum_pow
// Dependency:
#include "../glm.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTX_optimum_pow extension included")
#endif
namespace glm{
namespace gtx
{
/// @addtogroup gtx_optimum_pow
/// @{
//! Returns x raised to the power of 2.
//! From GLM_GTX_optimum_pow extension.
template <typename genType>
GLM_FUNC_DECL genType pow2(const genType& x);
//! Returns x raised to the power of 3.
//! From GLM_GTX_optimum_pow extension.
template <typename genType>
GLM_FUNC_DECL genType pow3(const genType& x);
//! Returns x raised to the power of 4.
//! From GLM_GTX_optimum_pow extension.
template <typename genType>
GLM_FUNC_DECL genType pow4(const genType& x);
//! Checks if the parameter is a power of 2 number.
//! From GLM_GTX_optimum_pow extension.
GLM_FUNC_DECL bool powOfTwo(int num);
//! Checks to determine if the parameter component are power of 2 numbers.
//! From GLM_GTX_optimum_pow extension.
template <precision P>
GLM_FUNC_DECL detail::tvec2<bool, P> powOfTwo(detail::tvec2<int, P> const & x);
//! Checks to determine if the parameter component are power of 2 numbers.
//! From GLM_GTX_optimum_pow extension.
template <precision P>
GLM_FUNC_DECL detail::tvec3<bool, P> powOfTwo(detail::tvec3<int, P> const & x);
//! Checks to determine if the parameter component are power of 2 numbers.
//! From GLM_GTX_optimum_pow extension.
template <precision P>
GLM_FUNC_DECL detail::tvec4<bool, P> powOfTwo(detail::tvec4<int, P> const & x);
/// @}
}//namespace gtx
}//namespace glm
#include "optimum_pow.inl"
#endif//GLM_GTX_optimum_pow

View File

@@ -0,0 +1,61 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2005-12-21
// Updated : 2005-12-27
// Licence : This source is under MIT License
// File : glm/gtx/optimum_pow.inl
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace glm
{
template <typename genType>
GLM_FUNC_QUALIFIER genType pow2(genType const & x)
{
return x * x;
}
template <typename genType>
GLM_FUNC_QUALIFIER genType pow3(genType const & x)
{
return x * x * x;
}
template <typename genType>
GLM_FUNC_QUALIFIER genType pow4(genType const & x)
{
return (x * x) * (x * x);
}
GLM_FUNC_QUALIFIER bool powOfTwo(int x)
{
return !(x & (x - 1));
}
template <precision P>
GLM_FUNC_QUALIFIER detail::tvec2<bool, P> powOfTwo(detail::tvec2<int, P> const & x)
{
return detail::tvec2<bool, P>(
powOfTwo(x.x),
powOfTwo(x.y));
}
template <precision P>
GLM_FUNC_QUALIFIER detail::tvec3<bool, P> powOfTwo(detail::tvec3<int, P> const & x)
{
return detail::tvec3<bool, P>(
powOfTwo(x.x),
powOfTwo(x.y),
powOfTwo(x.z));
}
template <precision P>
GLM_FUNC_QUALIFIER detail::tvec4<bool, P> powOfTwo(detail::tvec4<int, P> const & x)
{
return detail::tvec4<bool, P>(
powOfTwo(x.x),
powOfTwo(x.y),
powOfTwo(x.z),
powOfTwo(x.w));
}
}//namespace glm

View File

@@ -0,0 +1,72 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_orthonormalize
/// @file glm/gtx/orthonormalize.hpp
/// @date 2005-12-21 / 2011-06-07
/// @author Christophe Riccio
///
/// @see core (dependence)
/// @see gtx_extented_min_max (dependence)
///
/// @defgroup gtx_orthonormalize GLM_GTX_orthonormalize
/// @ingroup gtx
///
/// @brief Orthonormalize matrices.
///
/// <glm/gtx/orthonormalize.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTX_orthonormalize
#define GLM_GTX_orthonormalize
// Dependency:
#include "../glm.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTX_orthonormalize extension included")
#endif
namespace glm
{
/// @addtogroup gtx_orthonormalize
/// @{
//! Returns the orthonormalized matrix of m.
//! From GLM_GTX_orthonormalize extension.
template <typename T, precision P>
GLM_FUNC_DECL detail::tmat3x3<T, P> orthonormalize(
const detail::tmat3x3<T, P>& m);
//! Orthonormalizes x according y.
//! From GLM_GTX_orthonormalize extension.
template <typename T, precision P>
GLM_FUNC_DECL detail::tvec3<T, P> orthonormalize(
const detail::tvec3<T, P>& x,
const detail::tvec3<T, P>& y);
/// @}
}//namespace glm
#include "orthonormalize.inl"
#endif//GLM_GTX_orthonormalize

View File

@@ -0,0 +1,43 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2005-12-21
// Updated : 2005-12-21
// Licence : This source is under MIT License
// File : glm/gtx/orthonormalize.inl
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace glm
{
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tmat3x3<T, P> orthonormalize
(
const detail::tmat3x3<T, P>& m
)
{
detail::tmat3x3<T, P> r = m;
r[0] = normalize(r[0]);
float d0 = dot(r[0], r[1]);
r[1] -= r[0] * d0;
r[1] = normalize(r[1]);
float d1 = dot(r[1], r[2]);
d0 = dot(r[0], r[2]);
r[2] -= r[0] * d0 + r[1] * d1;
r[2] = normalize(r[2]);
return r;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<T, P> orthonormalize
(
const detail::tvec3<T, P>& x,
const detail::tvec3<T, P>& y
)
{
return normalize(x - y * dot(y, x));
}
}//namespace glm

View File

@@ -0,0 +1,67 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_perpendicular
/// @file glm/gtx/perpendicular.hpp
/// @date 2005-12-21 / 2011-06-07
/// @author Christophe Riccio
///
/// @see core (dependence)
/// @see gtx_projection (dependence)
///
/// @defgroup gtx_perpendicular GLM_GTX_perpendicular
/// @ingroup gtx
///
/// @brief Perpendicular of a vector from other one
///
/// <glm/gtx/perpendicular.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTX_perpendicular
#define GLM_GTX_perpendicular
// Dependency:
#include "../glm.hpp"
#include "../gtx/projection.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTX_perpendicular extension included")
#endif
namespace glm
{
/// @addtogroup gtx_perpendicular
/// @{
//! Projects x a perpendicular axis of Normal.
//! From GLM_GTX_perpendicular extension.
template <typename vecType>
GLM_FUNC_DECL vecType perp(
vecType const & x,
vecType const & Normal);
/// @}
}//namespace glm
#include "perpendicular.inl"
#endif//GLM_GTX_perpendicular

View File

@@ -0,0 +1,21 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2005-12-21
// Updated : 2009-03-06
// Licence : This source is under MIT License
// File : glm/gtx/perpendicular.inl
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace glm
{
template <typename vecType>
GLM_FUNC_QUALIFIER vecType perp
(
vecType const & x,
vecType const & Normal
)
{
return x - proj(x, Normal);
}
}//namespace glm

View File

@@ -0,0 +1,72 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_polar_coordinates
/// @file glm/gtx/polar_coordinates.hpp
/// @date 2007-03-06 / 2011-06-07
/// @author Christophe Riccio
///
/// @see core (dependence)
///
/// @defgroup gtx_polar_coordinates GLM_GTX_polar_coordinates
/// @ingroup gtx
///
/// @brief Conversion from Euclidean space to polar space and revert.
///
/// <glm/gtx/polar_coordinates.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTX_polar_coordinates
#define GLM_GTX_polar_coordinates
// Dependency:
#include "../glm.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTX_polar_coordinates extension included")
#endif
namespace glm
{
/// @addtogroup gtx_polar_coordinates
/// @{
/// Convert Euclidean to Polar coordinates, x is the xz distance, y, the latitude and z the longitude.
///
/// @see gtx_polar_coordinates
template <typename T, precision P>
GLM_FUNC_DECL detail::tvec3<T, P> polar(
detail::tvec3<T, P> const & euclidean);
/// Convert Polar to Euclidean coordinates.
///
/// @see gtx_polar_coordinates
template <typename T, precision P>
GLM_FUNC_DECL detail::tvec3<T, P> euclidean(
detail::tvec2<T, P> const & polar);
/// @}
}//namespace glm
#include "polar_coordinates.inl"
#endif//GLM_GTX_polar_coordinates

View File

@@ -0,0 +1,57 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2007-03-06
// Updated : 2009-05-01
// Licence : This source is under MIT License
// File : glm/gtx/polar_coordinates.inl
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace glm
{
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<T, P> polar
(
detail::tvec3<T, P> const & euclidean
)
{
T const Length(length(euclidean));
detail::tvec3<T, P> const tmp(euclidean / Length);
T const xz_dist(sqrt(tmp.x * tmp.x + tmp.z * tmp.z));
#ifdef GLM_FORCE_RADIANS
return detail::tvec3<T, P>(
atan(xz_dist, tmp.y), // latitude
atan(tmp.x, tmp.z), // longitude
xz_dist); // xz distance
#else
# pragma message("GLM: polar function returning degrees is deprecated. #define GLM_FORCE_RADIANS before including GLM headers to remove this message.")
return detail::tvec3<T, P>(
degrees(atan(xz_dist, tmp.y)), // latitude
degrees(atan(tmp.x, tmp.z)), // longitude
xz_dist); // xz distance
#endif
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<T, P> euclidean
(
detail::tvec2<T, P> const & polar
)
{
#ifdef GLM_FORCE_RADIANS
T const latitude(polar.x);
T const longitude(polar.y);
#else
# pragma message("GLM: euclidean function taking degrees as parameters is deprecated. #define GLM_FORCE_RADIANS before including GLM headers to remove this message.")
T const latitude(radians(polar.x));
T const longitude(radians(polar.y));
#endif
return detail::tvec3<T, P>(
cos(latitude) * sin(longitude),
sin(latitude),
cos(latitude) * cos(longitude));
}
}//namespace glm

View File

@@ -0,0 +1,65 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_projection
/// @file glm/gtx/projection.hpp
/// @date 2005-12-21 / 2011-06-07
/// @author Christophe Riccio
///
/// @see core (dependence)
///
/// @defgroup gtx_projection GLM_GTX_projection
/// @ingroup gtx
///
/// @brief Projection of a vector to other one
///
/// <glm/gtx/projection.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTX_projection
#define GLM_GTX_projection
// Dependency:
#include "../glm.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTX_projection extension included")
#endif
namespace glm
{
/// @addtogroup gtx_projection
/// @{
//! Projects x on Normal.
//! From GLM_GTX_projection extension.
template <typename vecType>
GLM_FUNC_DECL vecType proj(
vecType const & x,
vecType const & Normal);
/// @}
}//namespace glm
#include "projection.inl"
#endif//GLM_GTX_projection

View File

@@ -0,0 +1,21 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2005-12-21
// Updated : 2009-03-06
// Licence : This source is under MIT License
// File : glm/gtx/projection.inl
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace glm
{
template <typename vecType>
GLM_FUNC_QUALIFIER vecType proj
(
vecType const & x,
vecType const & Normal
)
{
return glm::dot(x, Normal) / glm::dot(Normal, Normal) * Normal;
}
}//namespace glm

View File

@@ -0,0 +1,213 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_quaternion
/// @file glm/gtx/quaternion.hpp
/// @date 2005-12-21 / 2011-06-07
/// @author Christophe Riccio
///
/// @see core (dependence)
/// @see gtx_extented_min_max (dependence)
///
/// @defgroup gtx_quaternion GLM_GTX_quaternion
/// @ingroup gtx
///
/// @brief Extented quaternion types and functions
///
/// <glm/gtx/quaternion.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTX_quaternion
#define GLM_GTX_quaternion
// Dependency:
#include "../glm.hpp"
#include "../gtc/constants.hpp"
#include "../gtc/quaternion.hpp"
#include "../gtx/norm.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTX_quaternion extension included")
#endif
namespace glm
{
/// @addtogroup gtx_quaternion
/// @{
//! Compute a cross product between a quaternion and a vector.
///
/// @see gtx_quaternion
template<typename T, precision P>
GLM_FUNC_DECL detail::tvec3<T, P> cross(
detail::tquat<T, P> const & q,
detail::tvec3<T, P> const & v);
//! Compute a cross product between a vector and a quaternion.
///
/// @see gtx_quaternion
template<typename T, precision P>
GLM_FUNC_DECL detail::tvec3<T, P> cross(
detail::tvec3<T, P> const & v,
detail::tquat<T, P> const & q);
//! Compute a point on a path according squad equation.
//! q1 and q2 are control points; s1 and s2 are intermediate control points.
///
/// @see gtx_quaternion
template<typename T, precision P>
GLM_FUNC_DECL detail::tquat<T, P> squad(
detail::tquat<T, P> const & q1,
detail::tquat<T, P> const & q2,
detail::tquat<T, P> const & s1,
detail::tquat<T, P> const & s2,
T const & h);
//! Returns an intermediate control point for squad interpolation.
///
/// @see gtx_quaternion
template<typename T, precision P>
GLM_FUNC_DECL detail::tquat<T, P> intermediate(
detail::tquat<T, P> const & prev,
detail::tquat<T, P> const & curr,
detail::tquat<T, P> const & next);
//! Returns a exp of a quaternion.
///
/// @see gtx_quaternion
template<typename T, precision P>
GLM_FUNC_DECL detail::tquat<T, P> exp(
detail::tquat<T, P> const & q);
//! Returns a log of a quaternion.
///
/// @see gtx_quaternion
template<typename T, precision P>
GLM_FUNC_DECL detail::tquat<T, P> log(
detail::tquat<T, P> const & q);
/// Returns x raised to the y power.
///
/// @see gtx_quaternion
template<typename T, precision P>
GLM_FUNC_DECL detail::tquat<T, P> pow(
detail::tquat<T, P> const & x,
T const & y);
//! Returns quarternion square root.
///
/// @see gtx_quaternion
//template<typename T, precision P>
//detail::tquat<T, P> sqrt(
// detail::tquat<T, P> const & q);
//! Rotates a 3 components vector by a quaternion.
///
/// @see gtx_quaternion
template<typename T, precision P>
GLM_FUNC_DECL detail::tvec3<T, P> rotate(
detail::tquat<T, P> const & q,
detail::tvec3<T, P> const & v);
/// Rotates a 4 components vector by a quaternion.
///
/// @see gtx_quaternion
template<typename T, precision P>
GLM_FUNC_DECL detail::tvec4<T, P> rotate(
detail::tquat<T, P> const & q,
detail::tvec4<T, P> const & v);
/// Extract the real component of a quaternion.
///
/// @see gtx_quaternion
template<typename T, precision P>
GLM_FUNC_DECL T extractRealComponent(
detail::tquat<T, P> const & q);
/// Converts a quaternion to a 3 * 3 matrix.
///
/// @see gtx_quaternion
template<typename T, precision P>
GLM_FUNC_DECL detail::tmat3x3<T, P> toMat3(
detail::tquat<T, P> const & x){return mat3_cast(x);}
/// Converts a quaternion to a 4 * 4 matrix.
///
/// @see gtx_quaternion
template<typename T, precision P>
GLM_FUNC_DECL detail::tmat4x4<T, P> toMat4(
detail::tquat<T, P> const & x){return mat4_cast(x);}
/// Converts a 3 * 3 matrix to a quaternion.
///
/// @see gtx_quaternion
template<typename T, precision P>
GLM_FUNC_DECL detail::tquat<T, P> toQuat(
detail::tmat3x3<T, P> const & x){return quat_cast(x);}
/// Converts a 4 * 4 matrix to a quaternion.
///
/// @see gtx_quaternion
template<typename T, precision P>
GLM_FUNC_DECL detail::tquat<T, P> toQuat(
detail::tmat4x4<T, P> const & x){return quat_cast(x);}
/// Quaternion interpolation using the rotation short path.
///
/// @see gtx_quaternion
template<typename T, precision P>
GLM_FUNC_DECL detail::tquat<T, P> shortMix(
detail::tquat<T, P> const & x,
detail::tquat<T, P> const & y,
T const & a);
/// Quaternion normalized linear interpolation.
///
/// @see gtx_quaternion
template<typename T, precision P>
GLM_FUNC_DECL detail::tquat<T, P> fastMix(
detail::tquat<T, P> const & x,
detail::tquat<T, P> const & y,
T const & a);
/// Compute the rotation between two vectors.
/// param orig vector, needs to be normalized
/// param dest vector, needs to be normalized
///
/// @see gtx_quaternion
template<typename T, precision P>
GLM_FUNC_DECL detail::tquat<T, P> rotation(
detail::tvec3<T, P> const & orig,
detail::tvec3<T, P> const & dest);
/// Returns the squared length of x.
///
/// @see gtx_quaternion
template<typename T, precision P>
GLM_FUNC_DECL T length2(detail::tquat<T, P> const & q);
/// @}
}//namespace glm
#include "quaternion.inl"
#endif//GLM_GTX_quaternion

View File

@@ -0,0 +1,262 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2005-12-21
// Updated : 2008-11-27
// Licence : This source is under MIT License
// File : glm/gtx/quaternion.inl
///////////////////////////////////////////////////////////////////////////////////////////////////
#include <limits>
#include "../gtc/constants.hpp"
namespace glm
{
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<T, P> cross
(
detail::tvec3<T, P> const & v,
detail::tquat<T, P> const & q
)
{
return inverse(q) * v;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<T, P> cross
(
detail::tquat<T, P> const & q,
detail::tvec3<T, P> const & v
)
{
return q * v;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tquat<T, P> squad
(
detail::tquat<T, P> const & q1,
detail::tquat<T, P> const & q2,
detail::tquat<T, P> const & s1,
detail::tquat<T, P> const & s2,
T const & h)
{
return mix(mix(q1, q2, h), mix(s1, s2, h), static_cast<T>(2) * (static_cast<T>(1) - h) * h);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tquat<T, P> intermediate
(
detail::tquat<T, P> const & prev,
detail::tquat<T, P> const & curr,
detail::tquat<T, P> const & next
)
{
detail::tquat<T, P> invQuat = inverse(curr);
return exp((log(next + invQuat) + log(prev + invQuat)) / static_cast<T>(-4)) * curr;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tquat<T, P> exp
(
detail::tquat<T, P> const & q
)
{
detail::tvec3<T, P> u(q.x, q.y, q.z);
T Angle = glm::length(u);
if (Angle < epsilon<T>())
return detail::tquat<T, P>();
detail::tvec3<T, P> v(u / Angle);
return detail::tquat<T, P>(cos(Angle), sin(Angle) * v);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tquat<T, P> log
(
detail::tquat<T, P> const & q
)
{
detail::tvec3<T, P> u(q.x, q.y, q.z);
T Vec3Len = length(u);
if (Vec3Len < epsilon<T>())
{
if(q.w > static_cast<T>(0))
return detail::tquat<T, P>(log(q.w), static_cast<T>(0), static_cast<T>(0), static_cast<T>(0));
else if(q.w < static_cast<T>(0))
return detail::tquat<T, P>(log(-q.w), pi<T>(), static_cast<T>(0), static_cast<T>(0));
else
return detail::tquat<T, P>(std::numeric_limits<T>::infinity(), std::numeric_limits<T>::infinity(), std::numeric_limits<T>::infinity(), std::numeric_limits<T>::infinity());
}
else
{
T QuatLen = sqrt(Vec3Len * Vec3Len + q.w * q.w);
T t = atan(Vec3Len, T(q.w)) / Vec3Len;
return detail::tquat<T, P>(log(QuatLen), t * q.x, t * q.y, t * q.z);
}
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tquat<T, P> pow
(
detail::tquat<T, P> const & x,
T const & y
)
{
if(abs(x.w) > (static_cast<T>(1) - epsilon<T>()))
return x;
T Angle = acos(y);
T NewAngle = Angle * y;
T Div = sin(NewAngle) / sin(Angle);
return detail::tquat<T, P>(
cos(NewAngle),
x.x * Div,
x.y * Div,
x.z * Div);
}
//template <typename T, precision P>
//GLM_FUNC_QUALIFIER detail::tquat<T, P> sqrt
//(
// detail::tquat<T, P> const & q
//)
//{
// T q0 = static_cast<T>(1) - dot(q, q);
// return T(2) * (T(1) + q0) * q;
//}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<T, P> rotate
(
detail::tquat<T, P> const & q,
detail::tvec3<T, P> const & v
)
{
return q * v;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec4<T, P> rotate
(
detail::tquat<T, P> const & q,
detail::tvec4<T, P> const & v
)
{
return q * v;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER T extractRealComponent
(
detail::tquat<T, P> const & q
)
{
T w = static_cast<T>(1) - q.x * q.x - q.y * q.y - q.z * q.z;
if(w < T(0))
return T(0);
else
return -sqrt(w);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER T length2
(
detail::tquat<T, P> const & q
)
{
return q.x * q.x + q.y * q.y + q.z * q.z + q.w * q.w;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tquat<T, P> shortMix
(
detail::tquat<T, P> const & x,
detail::tquat<T, P> const & y,
T const & a
)
{
if(a <= static_cast<T>(0)) return x;
if(a >= static_cast<T>(1)) return y;
T fCos = dot(x, y);
detail::tquat<T, P> y2(y); //BUG!!! tquat<T> y2;
if(fCos < static_cast<T>(0))
{
y2 = -y;
fCos = -fCos;
}
//if(fCos > 1.0f) // problem
T k0, k1;
if(fCos > (static_cast<T>(1) - epsilon<T>()))
{
k0 = static_cast<T>(1) - a;
k1 = static_cast<T>(0) + a; //BUG!!! 1.0f + a;
}
else
{
T fSin = sqrt(T(1) - fCos * fCos);
T fAngle = atan(fSin, fCos);
T fOneOverSin = static_cast<T>(1) / fSin;
k0 = sin((static_cast<T>(1) - a) * fAngle) * fOneOverSin;
k1 = sin((static_cast<T>(0) + a) * fAngle) * fOneOverSin;
}
return detail::tquat<T, P>(
k0 * x.w + k1 * y2.w,
k0 * x.x + k1 * y2.x,
k0 * x.y + k1 * y2.y,
k0 * x.z + k1 * y2.z);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tquat<T, P> fastMix
(
detail::tquat<T, P> const & x,
detail::tquat<T, P> const & y,
T const & a
)
{
return glm::normalize(x * (static_cast<T>(1) - a) + (y * a));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tquat<T, P> rotation
(
detail::tvec3<T, P> const & orig,
detail::tvec3<T, P> const & dest
)
{
T cosTheta = dot(orig, dest);
detail::tvec3<T, P> rotationAxis;
if(cosTheta < static_cast<T>(-1) + epsilon<T>())
{
// special case when vectors in opposite directions :
// there is no "ideal" rotation axis
// So guess one; any will do as long as it's perpendicular to start
// This implementation favors a rotation around the Up axis (Y),
// since it's often what you want to do.
rotationAxis = cross(detail::tvec3<T, P>(0, 0, 1), orig);
if(length2(rotationAxis) < epsilon<T>()) // bad luck, they were parallel, try again!
rotationAxis = cross(detail::tvec3<T, P>(1, 0, 0), orig);
rotationAxis = normalize(rotationAxis);
return angleAxis(pi<T>(), rotationAxis);
}
// Implementation from Stan Melax's Game Programming Gems 1 article
rotationAxis = cross(orig, dest);
T s = sqrt((T(1) + cosTheta) * static_cast<T>(2));
T invs = static_cast<T>(1) / s;
return detail::tquat<T, P>(
s * static_cast<T>(0.5f),
rotationAxis.x * invs,
rotationAxis.y * invs,
rotationAxis.z * invs);
}
}//namespace glm

View File

@@ -0,0 +1,29 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2013 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///////////////////////////////////////////////////////////////////////////////////
#if(defined(GLM_MESSAGES))
# pragma message("GLM: GLM_GTX_random extension is deprecated, include GLM_GTC_random instead")
#endif
// Promoted:
#include "../gtc/random.hpp"

View File

@@ -0,0 +1,75 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_raw_data
/// @file glm/gtx/raw_data.hpp
/// @date 2008-11-19 / 2011-06-07
/// @author Christophe Riccio
///
/// @see core (dependence)
///
/// @defgroup gtx_raw_data GLM_GTX_raw_data
/// @ingroup gtx
///
/// @brief Projection of a vector to other one
///
/// <glm/gtx/raw_data.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTX_raw_data
#define GLM_GTX_raw_data
// Dependencies
#include "../detail/setup.hpp"
#include "../detail/type_int.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTX_raw_data extension included")
#endif
namespace glm
{
/// @addtogroup gtx_raw_data
/// @{
//! Type for byte numbers.
//! From GLM_GTX_raw_data extension.
typedef detail::uint8 byte;
//! Type for word numbers.
//! From GLM_GTX_raw_data extension.
typedef detail::uint16 word;
//! Type for dword numbers.
//! From GLM_GTX_raw_data extension.
typedef detail::uint32 dword;
//! Type for qword numbers.
//! From GLM_GTX_raw_data extension.
typedef detail::uint64 qword;
/// @}
}// namespace glm
#include "raw_data.inl"
#endif//GLM_GTX_raw_data

View File

@@ -0,0 +1,11 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2008-11-19
// Updated : 2008-11-19
// Licence : This source is under MIT License
// File : glm/gtx/raw_data.inl
///////////////////////////////////////////////////////////////////////////////////////////////////
// Dependency:
// - GLM core
///////////////////////////////////////////////////////////////////////////////////////////////////

View File

@@ -0,0 +1,26 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2013 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///////////////////////////////////////////////////////////////////////////////////
#if(defined(GLM_MESSAGES))
# pragma message("GLM: GLM_GTX_reciprocal extension is deprecated, include GLM_GTC_reciprocal instead")
#endif

View File

@@ -0,0 +1,92 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2012 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_rotate_normalized_axis
/// @file glm/gtx/rotate_normalized_axis.hpp
/// @date 2012-12-13 / 2012-12-13
/// @author Christophe Riccio
///
/// @see core (dependence)
/// @see gtc_matrix_transform
/// @see gtc_quaternion
///
/// @defgroup gtx_rotate_normalized_axis GLM_GTX_rotate_normalized_axis
/// @ingroup gtc
///
/// @brief Quaternions and matrices rotations around normalized axis.
///
/// <glm/gtx/rotate_normalized_axis.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTX_rotate_normalized_axis
#define GLM_GTX_rotate_normalized_axis
// Dependency:
#include "../glm.hpp"
#include "../gtc/epsilon.hpp"
#include "../gtc/quaternion.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTX_rotate_normalized_axis extension included")
#endif
namespace glm
{
/// @addtogroup gtx_rotate_normalized_axis
/// @{
/// Builds a rotation 4 * 4 matrix created from a normalized axis and an angle.
///
/// @param m Input matrix multiplied by this rotation matrix.
/// @param angle Rotation angle expressed in radians if GLM_FORCE_RADIANS is define or degrees otherwise.
/// @param axis Rotation axis, must be normalized.
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
///
/// @see gtx_rotate_normalized_axis
/// @see - rotate(T angle, T x, T y, T z)
/// @see - rotate(detail::tmat4x4<T, P> const & m, T angle, T x, T y, T z)
/// @see - rotate(T angle, detail::tvec3<T, P> const & v)
template <typename T, precision P>
GLM_FUNC_DECL detail::tmat4x4<T, P> rotateNormalizedAxis(
detail::tmat4x4<T, P> const & m,
T const & angle,
detail::tvec3<T, P> const & axis);
/// Rotates a quaternion from a vector of 3 components normalized axis and an angle.
///
/// @param q Source orientation
/// @param angle Angle expressed in radians if GLM_FORCE_RADIANS is define or degrees otherwise.
/// @param axis Normalized axis of the rotation, must be normalized.
///
/// @see gtx_rotate_normalized_axis
template <typename T, precision P>
GLM_FUNC_DECL detail::tquat<T, P> rotateNormalizedAxis(
detail::tquat<T, P> const & q,
T const & angle,
detail::tvec3<T, P> const & axis);
/// @}
}//namespace glm
#include "rotate_normalized_axis.inl"
#endif//GLM_GTX_rotate_normalized_axis

View File

@@ -0,0 +1,94 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2012 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_rotate_normalized_axis
/// @file glm/gtx/rotate_normalized_axis.inl
/// @date 2012-12-13 / 2012-12-13
/// @author Christophe Riccio
///////////////////////////////////////////////////////////////////////////////////
namespace glm
{
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tmat4x4<T, P> rotateNormalizedAxis
(
detail::tmat4x4<T, P> const & m,
T const & angle,
detail::tvec3<T, P> const & v
)
{
#ifdef GLM_FORCE_RADIANS
T a = angle;
#else
# pragma message("GLM: rotateNormalizedAxis function taking degrees as parameters is deprecated. #define GLM_FORCE_RADIANS before including GLM headers to remove this message.")
T a = radians(angle);
#endif
T c = cos(a);
T s = sin(a);
detail::tvec3<T, P> axis = v;
detail::tvec3<T, P> temp = (T(1) - c) * axis;
detail::tmat4x4<T, P> Rotate(detail::tmat4x4<T, P>::_null);
Rotate[0][0] = c + temp[0] * axis[0];
Rotate[0][1] = 0 + temp[0] * axis[1] + s * axis[2];
Rotate[0][2] = 0 + temp[0] * axis[2] - s * axis[1];
Rotate[1][0] = 0 + temp[1] * axis[0] - s * axis[2];
Rotate[1][1] = c + temp[1] * axis[1];
Rotate[1][2] = 0 + temp[1] * axis[2] + s * axis[0];
Rotate[2][0] = 0 + temp[2] * axis[0] + s * axis[1];
Rotate[2][1] = 0 + temp[2] * axis[1] - s * axis[0];
Rotate[2][2] = c + temp[2] * axis[2];
detail::tmat4x4<T, P> Result(detail::tmat4x4<T, P>::_null);
Result[0] = m[0] * Rotate[0][0] + m[1] * Rotate[0][1] + m[2] * Rotate[0][2];
Result[1] = m[0] * Rotate[1][0] + m[1] * Rotate[1][1] + m[2] * Rotate[1][2];
Result[2] = m[0] * Rotate[2][0] + m[1] * Rotate[2][1] + m[2] * Rotate[2][2];
Result[3] = m[3];
return Result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tquat<T, P> rotateNormalizedAxis
(
detail::tquat<T, P> const & q,
T const & angle,
detail::tvec3<T, P> const & v
)
{
detail::tvec3<T, P> Tmp = v;
#ifdef GLM_FORCE_RADIANS
T const AngleRad(angle);
#else
# pragma message("GLM: rotateNormalizedAxis function taking degrees as parameters is deprecated. #define GLM_FORCE_RADIANS before including GLM headers to remove this message.")
T const AngleRad = radians(angle);
#endif
T const Sin = sin(AngleRad * T(0.5));
return q * detail::tquat<T, P>(cos(AngleRad * static_cast<T>(0.5)), Tmp.x * Sin, Tmp.y * Sin, Tmp.z * Sin);
//return gtc::quaternion::cross(q, detail::tquat<T, P>(cos(AngleRad * T(0.5)), Tmp.x * fSin, Tmp.y * fSin, Tmp.z * fSin));
}
}//namespace glm

View File

@@ -0,0 +1,132 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_rotate_vector
/// @file glm/gtx/rotate_vector.hpp
/// @date 2006-11-02 / 2011-06-07
/// @author Christophe Riccio
///
/// @see core (dependence)
/// @see gtx_transform (dependence)
///
/// @defgroup gtx_rotate_vector GLM_GTX_rotate_vector
/// @ingroup gtx
///
/// @brief Function to directly rotate a vector
///
/// <glm/gtx/rotate_vector.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTX_rotate_vector
#define GLM_GTX_rotate_vector
// Dependency:
#include "../glm.hpp"
#include "../gtx/transform.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTX_rotate_vector extension included")
#endif
namespace glm
{
/// @addtogroup gtx_rotate_vector
/// @{
//! Rotate a two dimensional vector.
//! From GLM_GTX_rotate_vector extension.
template <typename T, precision P>
GLM_FUNC_DECL detail::tvec2<T, P> rotate(
detail::tvec2<T, P> const & v,
T const & angle);
//! Rotate a three dimensional vector around an axis.
//! From GLM_GTX_rotate_vector extension.
template <typename T, precision P>
GLM_FUNC_DECL detail::tvec3<T, P> rotate(
detail::tvec3<T, P> const & v,
T const & angle,
detail::tvec3<T, P> const & normal);
//! Rotate a four dimensional vector around an axis.
//! From GLM_GTX_rotate_vector extension.
template <typename T, precision P>
GLM_FUNC_DECL detail::tvec4<T, P> rotate(
detail::tvec4<T, P> const & v,
T const & angle,
detail::tvec3<T, P> const & normal);
//! Rotate a three dimensional vector around the X axis.
//! From GLM_GTX_rotate_vector extension.
template <typename T, precision P>
GLM_FUNC_DECL detail::tvec3<T, P> rotateX(
detail::tvec3<T, P> const & v,
T const & angle);
//! Rotate a three dimensional vector around the Y axis.
//! From GLM_GTX_rotate_vector extension.
template <typename T, precision P>
GLM_FUNC_DECL detail::tvec3<T, P> rotateY(
detail::tvec3<T, P> const & v,
T const & angle);
//! Rotate a three dimensional vector around the Z axis.
//! From GLM_GTX_rotate_vector extension.
template <typename T, precision P>
GLM_FUNC_DECL detail::tvec3<T, P> rotateZ(
detail::tvec3<T, P> const & v,
T const & angle);
//! Rotate a four dimentionnals vector around the X axis.
//! From GLM_GTX_rotate_vector extension.
template <typename T, precision P>
GLM_FUNC_DECL detail::tvec4<T, P> rotateX(
detail::tvec4<T, P> const & v,
T const & angle);
//! Rotate a four dimensional vector around the X axis.
//! From GLM_GTX_rotate_vector extension.
template <typename T, precision P>
GLM_FUNC_DECL detail::tvec4<T, P> rotateY(
detail::tvec4<T, P> const & v,
T const & angle);
//! Rotate a four dimensional vector around the X axis.
//! From GLM_GTX_rotate_vector extension.
template <typename T, precision P>
GLM_FUNC_DECL detail::tvec4<T, P> rotateZ(
detail::tvec4<T, P> const & v,
T const & angle);
//! Build a rotation matrix from a normal and a up vector.
//! From GLM_GTX_rotate_vector extension.
template <typename T, precision P>
GLM_FUNC_DECL detail::tmat4x4<T, P> orientation(
detail::tvec3<T, P> const & Normal,
detail::tvec3<T, P> const & Up);
/// @}
}//namespace glm
#include "rotate_vector.inl"
#endif//GLM_GTX_rotate_vector

View File

@@ -0,0 +1,223 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2006-11-02
// Updated : 2009-02-19
// Licence : This source is under MIT License
// File : glm/gtx/rotate_vector.inl
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace glm
{
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec2<T, P> rotate
(
detail::tvec2<T, P> const & v,
T const & angle
)
{
detail::tvec2<T, P> Result;
#ifdef GLM_FORCE_RADIANS
T const Cos(cos(angle));
T const Sin(sin(angle));
#else
# pragma message("GLM: rotate function taking degrees as parameters is deprecated. #define GLM_FORCE_RADIANS before including GLM headers to remove this message.")
T const Cos = cos(radians(angle));
T const Sin = sin(radians(angle));
#endif
Result.x = v.x * Cos - v.y * Sin;
Result.y = v.x * Sin + v.y * Cos;
return Result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<T, P> rotate
(
detail::tvec3<T, P> const & v,
T const & angle,
detail::tvec3<T, P> const & normal
)
{
return detail::tmat3x3<T, P>(glm::rotate(angle, normal)) * v;
}
/*
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<T, P> rotateGTX(
const detail::tvec3<T, P>& x,
T angle,
const detail::tvec3<T, P>& normal)
{
const T Cos = cos(radians(angle));
const T Sin = sin(radians(angle));
return x * Cos + ((x * normal) * (T(1) - Cos)) * normal + cross(x, normal) * Sin;
}
*/
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec4<T, P> rotate
(
detail::tvec4<T, P> const & v,
T const & angle,
detail::tvec3<T, P> const & normal
)
{
return rotate(angle, normal) * v;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<T, P> rotateX
(
detail::tvec3<T, P> const & v,
T const & angle
)
{
detail::tvec3<T, P> Result(v);
#ifdef GLM_FORCE_RADIANS
T const Cos(cos(angle));
T const Sin(sin(angle));
#else
# pragma message("GLM: rotateX function taking degrees as parameters is deprecated. #define GLM_FORCE_RADIANS before including GLM headers to remove this message.")
T const Cos = cos(radians(angle));
T const Sin = sin(radians(angle));
#endif
Result.y = v.y * Cos - v.z * Sin;
Result.z = v.y * Sin + v.z * Cos;
return Result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<T, P> rotateY
(
detail::tvec3<T, P> const & v,
T const & angle
)
{
detail::tvec3<T, P> Result = v;
#ifdef GLM_FORCE_RADIANS
T const Cos(cos(angle));
T const Sin(sin(angle));
#else
# pragma message("GLM: rotateY function taking degrees as parameters is deprecated. #define GLM_FORCE_RADIANS before including GLM headers to remove this message.")
T const Cos(cos(radians(angle)));
T const Sin(sin(radians(angle)));
#endif
Result.x = v.x * Cos + v.z * Sin;
Result.z = -v.x * Sin + v.z * Cos;
return Result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec3<T, P> rotateZ
(
detail::tvec3<T, P> const & v,
T const & angle
)
{
detail::tvec3<T, P> Result = v;
#ifdef GLM_FORCE_RADIANS
T const Cos(cos(angle));
T const Sin(sin(angle));
#else
# pragma message("GLM: rotateZ function taking degrees as parameters is deprecated. #define GLM_FORCE_RADIANS before including GLM headers to remove this message.")
T const Cos(cos(radians(angle)));
T const Sin(sin(radians(angle)));
#endif
Result.x = v.x * Cos - v.y * Sin;
Result.y = v.x * Sin + v.y * Cos;
return Result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec4<T, P> rotateX
(
detail::tvec4<T, P> const & v,
T const & angle
)
{
detail::tvec4<T, P> Result = v;
#ifdef GLM_FORCE_RADIANS
T const Cos(cos(angle));
T const Sin(sin(angle));
#else
# pragma message("GLM: rotateX function taking degrees as parameters is deprecated. #define GLM_FORCE_RADIANS before including GLM headers to remove this message.")
T const Cos(cos(radians(angle)));
T const Sin(sin(radians(angle)));
#endif
Result.y = v.y * Cos - v.z * Sin;
Result.z = v.y * Sin + v.z * Cos;
return Result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec4<T, P> rotateY
(
detail::tvec4<T, P> const & v,
T const & angle
)
{
detail::tvec4<T, P> Result = v;
#ifdef GLM_FORCE_RADIANS
T const Cos(cos(angle));
T const Sin(sin(angle));
#else
# pragma message("GLM: rotateX function taking degrees as parameters is deprecated. #define GLM_FORCE_RADIANS before including GLM headers to remove this message.")
T const Cos(cos(radians(angle)));
T const Sin(sin(radians(angle)));
#endif
Result.x = v.x * Cos + v.z * Sin;
Result.z = -v.x * Sin + v.z * Cos;
return Result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tvec4<T, P> rotateZ
(
detail::tvec4<T, P> const & v,
T const & angle
)
{
detail::tvec4<T, P> Result = v;
#ifdef GLM_FORCE_RADIANS
T const Cos(cos(angle));
T const Sin(sin(angle));
#else
# pragma message("GLM: rotateZ function taking degrees as parameters is deprecated. #define GLM_FORCE_RADIANS before including GLM headers to remove this message.")
T const Cos(cos(radians(angle)));
T const Sin(sin(radians(angle)));
#endif
Result.x = v.x * Cos - v.y * Sin;
Result.y = v.x * Sin + v.y * Cos;
return Result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::tmat4x4<T, P> orientation
(
detail::tvec3<T, P> const & Normal,
detail::tvec3<T, P> const & Up
)
{
if(all(equal(Normal, Up)))
return detail::tmat4x4<T, P>(T(1));
detail::tvec3<T, P> RotationAxis = cross(Up, Normal);
# ifdef GLM_FORCE_RADIANS
T Angle = acos(dot(Normal, Up));
# else
# pragma message("GLM: rotateZ function taking degrees as parameters is deprecated. #define GLM_FORCE_RADIANS before including GLM headers to remove this message.")
T Angle = degrees(acos(dot(Normal, Up)));
# endif
return rotate(Angle, RotationAxis);
}
}//namespace glm

View File

@@ -0,0 +1,60 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2012 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_scalar_relational
/// @file glm/gtx/scalar_relational.hpp
/// @date 2013-02-04 / 2013-02-04
/// @author Christophe Riccio
///
/// @see core (dependence)
///
/// @defgroup gtx_extend GLM_GTX_scalar_relational
/// @ingroup gtx
///
/// @brief Extend a position from a source to a position at a defined length.
///
/// <glm/gtx/scalar_relational.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTX_scalar_relational
#define GLM_GTX_scalar_relational
// Dependency:
#include "../glm.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTX_extend extension included")
#endif
namespace glm
{
/// @addtogroup gtx_scalar_relational
/// @{
/// @}
}//namespace glm
#include "scalar_relational.inl"
#endif//GLM_GTX_scalar_relational

View File

@@ -0,0 +1,95 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2012 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2013-02-04
// Updated : 2013-02-04
// Licence : This source is under MIT License
// File : glm/gtx/scalar_relational.inl
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace glm
{
template <typename T>
GLM_FUNC_QUALIFIER bool lessThan
(
T const & x,
T const & y
)
{
return x < y;
}
template <typename T>
GLM_FUNC_QUALIFIER bool lessThanEqual
(
T const & x,
T const & y
)
{
return x <= y;
}
template <typename T>
GLM_FUNC_QUALIFIER bool greaterThan
(
T const & x,
T const & y
)
{
return x > y;
}
template <typename T>
GLM_FUNC_QUALIFIER bool greaterThanEqual
(
T const & x,
T const & y
)
{
return x >= y;
}
template <typename T>
GLM_FUNC_QUALIFIER bool equal
(
T const & x,
T const & y
)
{
return x == y;
}
template <typename T>
GLM_FUNC_QUALIFIER bool notEqual
(
T const & x,
T const & y
)
{
return x != y;
}
GLM_FUNC_QUALIFIER bool any
(
bool const & x
)
{
return x;
}
GLM_FUNC_QUALIFIER bool all
(
bool const & x
)
{
return x;
}
GLM_FUNC_QUALIFIER bool not_
(
bool const & x
)
{
return !x;
}
}//namespace glm

View File

@@ -0,0 +1,205 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_simd_vec4
/// @file glm/gtx/simd_vec4.hpp
/// @date 2009-05-07 / 2011-06-07
/// @author Christophe Riccio
///
/// @see core (dependence)
///
/// @defgroup gtx_simd_mat4 GLM_GTX_simd_mat4
/// @ingroup gtx
///
/// @brief SIMD implementation of mat4 type.
///
/// <glm/gtx/simd_mat4.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTX_simd_mat4
#define GLM_GTX_simd_mat4
// Dependencies
#include "../detail/setup.hpp"
#if(GLM_ARCH != GLM_ARCH_PURE)
#if(GLM_ARCH & GLM_ARCH_SSE2)
# include "../detail/intrinsic_matrix.hpp"
# include "../gtx/simd_vec4.hpp"
#else
# error "GLM: GLM_GTX_simd_mat4 requires compiler support of SSE2 through intrinsics"
#endif
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTX_simd_mat4 extension included")
#endif
namespace glm{
namespace detail
{
/// 4x4 Matrix implemented using SIMD SEE intrinsics.
/// \ingroup gtx_simd_mat4
GLM_ALIGNED_STRUCT(16) fmat4x4SIMD
{
enum ctor{_null};
typedef float value_type;
typedef fvec4SIMD col_type;
typedef fvec4SIMD row_type;
typedef std::size_t size_type;
typedef fmat4x4SIMD type;
typedef fmat4x4SIMD transpose_type;
GLM_FUNC_DECL length_t length() const;
fvec4SIMD Data[4];
//////////////////////////////////////
// Constructors
fmat4x4SIMD();
explicit fmat4x4SIMD(float const & s);
explicit fmat4x4SIMD(
float const & x0, float const & y0, float const & z0, float const & w0,
float const & x1, float const & y1, float const & z1, float const & w1,
float const & x2, float const & y2, float const & z2, float const & w2,
float const & x3, float const & y3, float const & z3, float const & w3);
explicit fmat4x4SIMD(
fvec4SIMD const & v0,
fvec4SIMD const & v1,
fvec4SIMD const & v2,
fvec4SIMD const & v3);
explicit fmat4x4SIMD(
mat4x4 const & m);
explicit fmat4x4SIMD(
__m128 const in[4]);
// Conversions
//template <typename U>
//explicit tmat4x4(tmat4x4<U> const & m);
//explicit tmat4x4(tmat2x2<T> const & x);
//explicit tmat4x4(tmat3x3<T> const & x);
//explicit tmat4x4(tmat2x3<T> const & x);
//explicit tmat4x4(tmat3x2<T> const & x);
//explicit tmat4x4(tmat2x4<T> const & x);
//explicit tmat4x4(tmat4x2<T> const & x);
//explicit tmat4x4(tmat3x4<T> const & x);
//explicit tmat4x4(tmat4x3<T> const & x);
// Accesses
fvec4SIMD & operator[](length_t i);
fvec4SIMD const & operator[](length_t i) const;
// Unary updatable operators
fmat4x4SIMD & operator= (fmat4x4SIMD const & m);
fmat4x4SIMD & operator+= (float const & s);
fmat4x4SIMD & operator+= (fmat4x4SIMD const & m);
fmat4x4SIMD & operator-= (float const & s);
fmat4x4SIMD & operator-= (fmat4x4SIMD const & m);
fmat4x4SIMD & operator*= (float const & s);
fmat4x4SIMD & operator*= (fmat4x4SIMD const & m);
fmat4x4SIMD & operator/= (float const & s);
fmat4x4SIMD & operator/= (fmat4x4SIMD const & m);
fmat4x4SIMD & operator++ ();
fmat4x4SIMD & operator-- ();
};
// Binary operators
fmat4x4SIMD operator+ (fmat4x4SIMD const & m, float const & s);
fmat4x4SIMD operator+ (float const & s, fmat4x4SIMD const & m);
fmat4x4SIMD operator+ (fmat4x4SIMD const & m1, fmat4x4SIMD const & m2);
fmat4x4SIMD operator- (fmat4x4SIMD const & m, float const & s);
fmat4x4SIMD operator- (float const & s, fmat4x4SIMD const & m);
fmat4x4SIMD operator- (fmat4x4SIMD const & m1, fmat4x4SIMD const & m2);
fmat4x4SIMD operator* (fmat4x4SIMD const & m, float const & s);
fmat4x4SIMD operator* (float const & s, fmat4x4SIMD const & m);
fvec4SIMD operator* (fmat4x4SIMD const & m, fvec4SIMD const & v);
fvec4SIMD operator* (fvec4SIMD const & v, fmat4x4SIMD const & m);
fmat4x4SIMD operator* (fmat4x4SIMD const & m1, fmat4x4SIMD const & m2);
fmat4x4SIMD operator/ (fmat4x4SIMD const & m, float const & s);
fmat4x4SIMD operator/ (float const & s, fmat4x4SIMD const & m);
fvec4SIMD operator/ (fmat4x4SIMD const & m, fvec4SIMD const & v);
fvec4SIMD operator/ (fvec4SIMD const & v, fmat4x4SIMD const & m);
fmat4x4SIMD operator/ (fmat4x4SIMD const & m1, fmat4x4SIMD const & m2);
// Unary constant operators
fmat4x4SIMD const operator- (fmat4x4SIMD const & m);
fmat4x4SIMD const operator-- (fmat4x4SIMD const & m, int);
fmat4x4SIMD const operator++ (fmat4x4SIMD const & m, int);
}//namespace detail
typedef detail::fmat4x4SIMD simdMat4;
/// @addtogroup gtx_simd_mat4
/// @{
//! Convert a simdMat4 to a mat4.
//! (From GLM_GTX_simd_mat4 extension)
mat4 mat4_cast(
detail::fmat4x4SIMD const & x);
//! Multiply matrix x by matrix y component-wise, i.e.,
//! result[i][j] is the scalar product of x[i][j] and y[i][j].
//! (From GLM_GTX_simd_mat4 extension).
detail::fmat4x4SIMD matrixCompMult(
detail::fmat4x4SIMD const & x,
detail::fmat4x4SIMD const & y);
//! Treats the first parameter c as a column vector
//! and the second parameter r as a row vector
//! and does a linear algebraic matrix multiply c * r.
//! (From GLM_GTX_simd_mat4 extension).
detail::fmat4x4SIMD outerProduct(
detail::fvec4SIMD const & c,
detail::fvec4SIMD const & r);
//! Returns the transposed matrix of x
//! (From GLM_GTX_simd_mat4 extension).
detail::fmat4x4SIMD transpose(
detail::fmat4x4SIMD const & x);
//! Return the determinant of a mat4 matrix.
//! (From GLM_GTX_simd_mat4 extension).
float determinant(
detail::fmat4x4SIMD const & m);
//! Return the inverse of a mat4 matrix.
//! (From GLM_GTX_simd_mat4 extension).
detail::fmat4x4SIMD inverse(
detail::fmat4x4SIMD const & m);
/// @}
}// namespace glm
#include "simd_mat4.inl"
#endif//(GLM_ARCH != GLM_ARCH_PURE)
#endif//GLM_GTX_simd_mat4

View File

@@ -0,0 +1,579 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2009-05-19
// Updated : 2009-05-19
// Licence : This source is under MIT License
// File : glm/gtx/simd_mat4.hpp
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace glm{
namespace detail{
GLM_FUNC_QUALIFIER length_t fmat4x4SIMD::length() const
{
return 4;
}
//////////////////////////////////////
// Accesses
GLM_FUNC_QUALIFIER fvec4SIMD & fmat4x4SIMD::operator[]
(
length_t i
)
{
assert(i < this->length());
return this->Data[i];
}
GLM_FUNC_QUALIFIER fvec4SIMD const & fmat4x4SIMD::operator[]
(
length_t i
) const
{
assert(i < this->length());
return this->Data[i];
}
//////////////////////////////////////////////////////////////
// Constructors
GLM_FUNC_QUALIFIER fmat4x4SIMD::fmat4x4SIMD()
{
#ifndef GLM_SIMD_ENABLE_DEFAULT_INIT
this->Data[0] = fvec4SIMD(1.0f, 0, 0, 0);
this->Data[1] = fvec4SIMD(0, 1.0f, 0, 0);
this->Data[2] = fvec4SIMD(0, 0, 1.0f, 0);
this->Data[3] = fvec4SIMD(0, 0, 0, 1.0f);
#endif
}
GLM_FUNC_QUALIFIER fmat4x4SIMD::fmat4x4SIMD(float const & s)
{
this->Data[0] = fvec4SIMD(s, 0, 0, 0);
this->Data[1] = fvec4SIMD(0, s, 0, 0);
this->Data[2] = fvec4SIMD(0, 0, s, 0);
this->Data[3] = fvec4SIMD(0, 0, 0, s);
}
GLM_FUNC_QUALIFIER fmat4x4SIMD::fmat4x4SIMD
(
float const & x0, float const & y0, float const & z0, float const & w0,
float const & x1, float const & y1, float const & z1, float const & w1,
float const & x2, float const & y2, float const & z2, float const & w2,
float const & x3, float const & y3, float const & z3, float const & w3
)
{
this->Data[0] = fvec4SIMD(x0, y0, z0, w0);
this->Data[1] = fvec4SIMD(x1, y1, z1, w1);
this->Data[2] = fvec4SIMD(x2, y2, z2, w2);
this->Data[3] = fvec4SIMD(x3, y3, z3, w3);
}
GLM_FUNC_QUALIFIER fmat4x4SIMD::fmat4x4SIMD
(
fvec4SIMD const & v0,
fvec4SIMD const & v1,
fvec4SIMD const & v2,
fvec4SIMD const & v3
)
{
this->Data[0] = v0;
this->Data[1] = v1;
this->Data[2] = v2;
this->Data[3] = v3;
}
GLM_FUNC_QUALIFIER fmat4x4SIMD::fmat4x4SIMD
(
mat4 const & m
)
{
this->Data[0] = fvec4SIMD(m[0]);
this->Data[1] = fvec4SIMD(m[1]);
this->Data[2] = fvec4SIMD(m[2]);
this->Data[3] = fvec4SIMD(m[3]);
}
GLM_FUNC_QUALIFIER fmat4x4SIMD::fmat4x4SIMD
(
__m128 const in[4]
)
{
this->Data[0] = in[0];
this->Data[1] = in[1];
this->Data[2] = in[2];
this->Data[3] = in[3];
}
//////////////////////////////////////////////////////////////
// mat4 operators
GLM_FUNC_QUALIFIER fmat4x4SIMD& fmat4x4SIMD::operator=
(
fmat4x4SIMD const & m
)
{
this->Data[0] = m[0];
this->Data[1] = m[1];
this->Data[2] = m[2];
this->Data[3] = m[3];
return *this;
}
GLM_FUNC_QUALIFIER fmat4x4SIMD & fmat4x4SIMD::operator+=
(
fmat4x4SIMD const & m
)
{
this->Data[0].Data = _mm_add_ps(this->Data[0].Data, m[0].Data);
this->Data[1].Data = _mm_add_ps(this->Data[1].Data, m[1].Data);
this->Data[2].Data = _mm_add_ps(this->Data[2].Data, m[2].Data);
this->Data[3].Data = _mm_add_ps(this->Data[3].Data, m[3].Data);
return *this;
}
GLM_FUNC_QUALIFIER fmat4x4SIMD & fmat4x4SIMD::operator-=
(
fmat4x4SIMD const & m
)
{
this->Data[0].Data = _mm_sub_ps(this->Data[0].Data, m[0].Data);
this->Data[1].Data = _mm_sub_ps(this->Data[1].Data, m[1].Data);
this->Data[2].Data = _mm_sub_ps(this->Data[2].Data, m[2].Data);
this->Data[3].Data = _mm_sub_ps(this->Data[3].Data, m[3].Data);
return *this;
}
GLM_FUNC_QUALIFIER fmat4x4SIMD & fmat4x4SIMD::operator*=
(
fmat4x4SIMD const & m
)
{
sse_mul_ps(&this->Data[0].Data, &m.Data[0].Data, &this->Data[0].Data);
return *this;
}
GLM_FUNC_QUALIFIER fmat4x4SIMD & fmat4x4SIMD::operator/=
(
fmat4x4SIMD const & m
)
{
__m128 Inv[4];
sse_inverse_ps(&m.Data[0].Data, Inv);
sse_mul_ps(&this->Data[0].Data, Inv, &this->Data[0].Data);
return *this;
}
GLM_FUNC_QUALIFIER fmat4x4SIMD & fmat4x4SIMD::operator+=
(
float const & s
)
{
__m128 Operand = _mm_set_ps1(s);
this->Data[0].Data = _mm_add_ps(this->Data[0].Data, Operand);
this->Data[1].Data = _mm_add_ps(this->Data[1].Data, Operand);
this->Data[2].Data = _mm_add_ps(this->Data[2].Data, Operand);
this->Data[3].Data = _mm_add_ps(this->Data[3].Data, Operand);
return *this;
}
GLM_FUNC_QUALIFIER fmat4x4SIMD & fmat4x4SIMD::operator-=
(
float const & s
)
{
__m128 Operand = _mm_set_ps1(s);
this->Data[0].Data = _mm_sub_ps(this->Data[0].Data, Operand);
this->Data[1].Data = _mm_sub_ps(this->Data[1].Data, Operand);
this->Data[2].Data = _mm_sub_ps(this->Data[2].Data, Operand);
this->Data[3].Data = _mm_sub_ps(this->Data[3].Data, Operand);
return *this;
}
GLM_FUNC_QUALIFIER fmat4x4SIMD & fmat4x4SIMD::operator*=
(
float const & s
)
{
__m128 Operand = _mm_set_ps1(s);
this->Data[0].Data = _mm_mul_ps(this->Data[0].Data, Operand);
this->Data[1].Data = _mm_mul_ps(this->Data[1].Data, Operand);
this->Data[2].Data = _mm_mul_ps(this->Data[2].Data, Operand);
this->Data[3].Data = _mm_mul_ps(this->Data[3].Data, Operand);
return *this;
}
GLM_FUNC_QUALIFIER fmat4x4SIMD & fmat4x4SIMD::operator/=
(
float const & s
)
{
__m128 Operand = _mm_div_ps(one, _mm_set_ps1(s));
this->Data[0].Data = _mm_mul_ps(this->Data[0].Data, Operand);
this->Data[1].Data = _mm_mul_ps(this->Data[1].Data, Operand);
this->Data[2].Data = _mm_mul_ps(this->Data[2].Data, Operand);
this->Data[3].Data = _mm_mul_ps(this->Data[3].Data, Operand);
return *this;
}
GLM_FUNC_QUALIFIER fmat4x4SIMD & fmat4x4SIMD::operator++ ()
{
this->Data[0].Data = _mm_add_ps(this->Data[0].Data, one);
this->Data[1].Data = _mm_add_ps(this->Data[1].Data, one);
this->Data[2].Data = _mm_add_ps(this->Data[2].Data, one);
this->Data[3].Data = _mm_add_ps(this->Data[3].Data, one);
return *this;
}
GLM_FUNC_QUALIFIER fmat4x4SIMD & fmat4x4SIMD::operator-- ()
{
this->Data[0].Data = _mm_sub_ps(this->Data[0].Data, one);
this->Data[1].Data = _mm_sub_ps(this->Data[1].Data, one);
this->Data[2].Data = _mm_sub_ps(this->Data[2].Data, one);
this->Data[3].Data = _mm_sub_ps(this->Data[3].Data, one);
return *this;
}
//////////////////////////////////////////////////////////////
// Binary operators
GLM_FUNC_QUALIFIER fmat4x4SIMD operator+
(
const fmat4x4SIMD &m,
float const & s
)
{
return detail::fmat4x4SIMD
(
m[0] + s,
m[1] + s,
m[2] + s,
m[3] + s
);
}
GLM_FUNC_QUALIFIER fmat4x4SIMD operator+
(
float const & s,
const fmat4x4SIMD &m
)
{
return detail::fmat4x4SIMD
(
m[0] + s,
m[1] + s,
m[2] + s,
m[3] + s
);
}
GLM_FUNC_QUALIFIER fmat4x4SIMD operator+
(
const fmat4x4SIMD &m1,
const fmat4x4SIMD &m2
)
{
return detail::fmat4x4SIMD
(
m1[0] + m2[0],
m1[1] + m2[1],
m1[2] + m2[2],
m1[3] + m2[3]
);
}
GLM_FUNC_QUALIFIER fmat4x4SIMD operator-
(
const fmat4x4SIMD &m,
float const & s
)
{
return detail::fmat4x4SIMD
(
m[0] - s,
m[1] - s,
m[2] - s,
m[3] - s
);
}
GLM_FUNC_QUALIFIER fmat4x4SIMD operator-
(
float const & s,
const fmat4x4SIMD &m
)
{
return detail::fmat4x4SIMD
(
s - m[0],
s - m[1],
s - m[2],
s - m[3]
);
}
GLM_FUNC_QUALIFIER fmat4x4SIMD operator-
(
const fmat4x4SIMD &m1,
const fmat4x4SIMD &m2
)
{
return detail::fmat4x4SIMD
(
m1[0] - m2[0],
m1[1] - m2[1],
m1[2] - m2[2],
m1[3] - m2[3]
);
}
GLM_FUNC_QUALIFIER fmat4x4SIMD operator*
(
const fmat4x4SIMD &m,
float const & s
)
{
return detail::fmat4x4SIMD
(
m[0] * s,
m[1] * s,
m[2] * s,
m[3] * s
);
}
GLM_FUNC_QUALIFIER fmat4x4SIMD operator*
(
float const & s,
const fmat4x4SIMD &m
)
{
return detail::fmat4x4SIMD
(
m[0] * s,
m[1] * s,
m[2] * s,
m[3] * s
);
}
GLM_FUNC_QUALIFIER fvec4SIMD operator*
(
const fmat4x4SIMD &m,
fvec4SIMD const & v
)
{
return sse_mul_ps(&m.Data[0].Data, v.Data);
}
GLM_FUNC_QUALIFIER fvec4SIMD operator*
(
fvec4SIMD const & v,
const fmat4x4SIMD &m
)
{
return sse_mul_ps(v.Data, &m.Data[0].Data);
}
GLM_FUNC_QUALIFIER fmat4x4SIMD operator*
(
const fmat4x4SIMD &m1,
const fmat4x4SIMD &m2
)
{
fmat4x4SIMD result;
sse_mul_ps(&m1.Data[0].Data, &m2.Data[0].Data, &result.Data[0].Data);
return result;
}
GLM_FUNC_QUALIFIER fmat4x4SIMD operator/
(
const fmat4x4SIMD &m,
float const & s
)
{
return detail::fmat4x4SIMD
(
m[0] / s,
m[1] / s,
m[2] / s,
m[3] / s
);
}
GLM_FUNC_QUALIFIER fmat4x4SIMD operator/
(
float const & s,
const fmat4x4SIMD &m
)
{
return detail::fmat4x4SIMD
(
s / m[0],
s / m[1],
s / m[2],
s / m[3]
);
}
GLM_FUNC_QUALIFIER detail::fmat4x4SIMD inverse(detail::fmat4x4SIMD const & m)
{
detail::fmat4x4SIMD result;
detail::sse_inverse_ps(&m[0].Data, &result[0].Data);
return result;
}
GLM_FUNC_QUALIFIER fvec4SIMD operator/
(
const fmat4x4SIMD & m,
fvec4SIMD const & v
)
{
return inverse(m) * v;
}
GLM_FUNC_QUALIFIER fvec4SIMD operator/
(
fvec4SIMD const & v,
const fmat4x4SIMD &m
)
{
return v * inverse(m);
}
GLM_FUNC_QUALIFIER fmat4x4SIMD operator/
(
const fmat4x4SIMD &m1,
const fmat4x4SIMD &m2
)
{
__m128 result[4];
__m128 inv[4];
sse_inverse_ps(&m2.Data[0].Data, inv);
sse_mul_ps(&m1.Data[0].Data, inv, result);
return fmat4x4SIMD(result);
}
//////////////////////////////////////////////////////////////
// Unary constant operators
GLM_FUNC_QUALIFIER fmat4x4SIMD const operator-
(
fmat4x4SIMD const & m
)
{
return detail::fmat4x4SIMD
(
-m[0],
-m[1],
-m[2],
-m[3]
);
}
GLM_FUNC_QUALIFIER fmat4x4SIMD const operator--
(
fmat4x4SIMD const & m,
int
)
{
return detail::fmat4x4SIMD
(
m[0] - 1.0f,
m[1] - 1.0f,
m[2] - 1.0f,
m[3] - 1.0f
);
}
GLM_FUNC_QUALIFIER fmat4x4SIMD const operator++
(
fmat4x4SIMD const & m,
int
)
{
return detail::fmat4x4SIMD
(
m[0] + 1.0f,
m[1] + 1.0f,
m[2] + 1.0f,
m[3] + 1.0f
);
}
}//namespace detail
GLM_FUNC_QUALIFIER mat4 mat4_cast
(
detail::fmat4x4SIMD const & x
)
{
GLM_ALIGN(16) mat4 Result;
_mm_store_ps(&Result[0][0], x.Data[0].Data);
_mm_store_ps(&Result[1][0], x.Data[1].Data);
_mm_store_ps(&Result[2][0], x.Data[2].Data);
_mm_store_ps(&Result[3][0], x.Data[3].Data);
return Result;
}
GLM_FUNC_QUALIFIER detail::fmat4x4SIMD matrixCompMult
(
detail::fmat4x4SIMD const & x,
detail::fmat4x4SIMD const & y
)
{
detail::fmat4x4SIMD result;
result[0] = x[0] * y[0];
result[1] = x[1] * y[1];
result[2] = x[2] * y[2];
result[3] = x[3] * y[3];
return result;
}
GLM_FUNC_QUALIFIER detail::fmat4x4SIMD outerProduct
(
detail::fvec4SIMD const & c,
detail::fvec4SIMD const & r
)
{
__m128 Shu0 = _mm_shuffle_ps(r.Data, r.Data, _MM_SHUFFLE(0, 0, 0, 0));
__m128 Shu1 = _mm_shuffle_ps(r.Data, r.Data, _MM_SHUFFLE(1, 1, 1, 1));
__m128 Shu2 = _mm_shuffle_ps(r.Data, r.Data, _MM_SHUFFLE(2, 2, 2, 2));
__m128 Shu3 = _mm_shuffle_ps(r.Data, r.Data, _MM_SHUFFLE(3, 3, 3, 3));
detail::fmat4x4SIMD result(detail::fmat4x4SIMD::_null);
result[0].Data = _mm_mul_ps(c.Data, Shu0);
result[1].Data = _mm_mul_ps(c.Data, Shu1);
result[2].Data = _mm_mul_ps(c.Data, Shu2);
result[3].Data = _mm_mul_ps(c.Data, Shu3);
return result;
}
GLM_FUNC_QUALIFIER detail::fmat4x4SIMD transpose(detail::fmat4x4SIMD const & m)
{
detail::fmat4x4SIMD result;
detail::sse_transpose_ps(&m[0].Data, &result[0].Data);
return result;
}
GLM_FUNC_QUALIFIER float determinant(detail::fmat4x4SIMD const & m)
{
float Result;
_mm_store_ss(&Result, detail::sse_det_ps(&m[0].Data));
return Result;
}
}//namespace glm

View File

@@ -0,0 +1,341 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_simd_quat
/// @file glm/gtx/simd_quat.hpp
/// @date 2009-05-07 / 2011-06-07
/// @author Christophe Riccio
///
/// @see core (dependence)
///
/// @defgroup gtx_simd_vec4 GLM_GTX_simd_quat
/// @ingroup gtx
///
/// @brief SIMD implementation of quat type.
///
/// <glm/gtx/simd_quat.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTX_simd_quat
#define GLM_GTX_simd_quat
// Dependency:
#include "../glm.hpp"
#include "../gtc/quaternion.hpp"
#include "../gtx/fast_trigonometry.hpp"
#if(GLM_ARCH != GLM_ARCH_PURE)
#if(GLM_ARCH & GLM_ARCH_SSE2)
# include "../gtx/simd_mat4.hpp"
#else
# error "GLM: GLM_GTX_simd_quat requires compiler support of SSE2 through intrinsics"
#endif
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTX_simd_quat extension included")
#endif
// Warning silencer for nameless struct/union.
#if (GLM_COMPILER & GLM_COMPILER_VC)
# pragma warning(push)
# pragma warning(disable:4201) // warning C4201: nonstandard extension used : nameless struct/union
#endif
namespace glm{
namespace detail
{
/// Quaternion implemented using SIMD SEE intrinsics.
/// \ingroup gtx_simd_vec4
GLM_ALIGNED_STRUCT(16) fquatSIMD
{
enum ctor{null};
typedef __m128 value_type;
typedef std::size_t size_type;
static size_type value_size();
typedef fquatSIMD type;
typedef tquat<bool, defaultp> bool_type;
#ifdef GLM_SIMD_ENABLE_XYZW_UNION
union
{
__m128 Data;
struct {float x, y, z, w;};
};
#else
__m128 Data;
#endif
//////////////////////////////////////
// Implicit basic constructors
fquatSIMD();
fquatSIMD(__m128 const & Data);
fquatSIMD(fquatSIMD const & q);
//////////////////////////////////////
// Explicit basic constructors
explicit fquatSIMD(
ctor);
explicit fquatSIMD(
float const & w,
float const & x,
float const & y,
float const & z);
explicit fquatSIMD(
quat const & v);
explicit fquatSIMD(
vec3 const & eulerAngles);
//////////////////////////////////////
// Unary arithmetic operators
fquatSIMD& operator =(fquatSIMD const & q);
fquatSIMD& operator*=(float const & s);
fquatSIMD& operator/=(float const & s);
};
//////////////////////////////////////
// Arithmetic operators
detail::fquatSIMD operator- (
detail::fquatSIMD const & q);
detail::fquatSIMD operator+ (
detail::fquatSIMD const & q,
detail::fquatSIMD const & p);
detail::fquatSIMD operator* (
detail::fquatSIMD const & q,
detail::fquatSIMD const & p);
detail::fvec4SIMD operator* (
detail::fquatSIMD const & q,
detail::fvec4SIMD const & v);
detail::fvec4SIMD operator* (
detail::fvec4SIMD const & v,
detail::fquatSIMD const & q);
detail::fquatSIMD operator* (
detail::fquatSIMD const & q,
float s);
detail::fquatSIMD operator* (
float s,
detail::fquatSIMD const & q);
detail::fquatSIMD operator/ (
detail::fquatSIMD const & q,
float s);
}//namespace detail
typedef glm::detail::fquatSIMD simdQuat;
/// @addtogroup gtx_simd_quat
/// @{
//! Convert a simdQuat to a quat.
//! (From GLM_GTX_simd_quat extension)
quat quat_cast(
detail::fquatSIMD const & x);
//! Convert a simdMat4 to a simdQuat.
//! (From GLM_GTX_simd_quat extension)
detail::fquatSIMD quatSIMD_cast(
detail::fmat4x4SIMD const & m);
//! Converts a mat4 to a simdQuat.
//! (From GLM_GTX_simd_quat extension)
template <typename T, precision P>
detail::fquatSIMD quatSIMD_cast(
detail::tmat4x4<T, P> const & m);
//! Converts a mat3 to a simdQuat.
//! (From GLM_GTX_simd_quat extension)
template <typename T, precision P>
detail::fquatSIMD quatSIMD_cast(
detail::tmat3x3<T, P> const & m);
//! Convert a simdQuat to a simdMat4
//! (From GLM_GTX_simd_quat extension)
detail::fmat4x4SIMD mat4SIMD_cast(
detail::fquatSIMD const & q);
//! Converts a simdQuat to a standard mat4.
//! (From GLM_GTX_simd_quat extension)
mat4 mat4_cast(
detail::fquatSIMD const & q);
/// Returns the length of the quaternion.
///
/// @see gtc_quaternion
float length(
detail::fquatSIMD const & x);
/// Returns the normalized quaternion.
///
/// @see gtc_quaternion
detail::fquatSIMD normalize(
detail::fquatSIMD const & x);
/// Returns dot product of q1 and q2, i.e., q1[0] * q2[0] + q1[1] * q2[1] + ...
///
/// @see gtc_quaternion
float dot(
detail::fquatSIMD const & q1,
detail::fquatSIMD const & q2);
/// Spherical linear interpolation of two quaternions.
/// The interpolation is oriented and the rotation is performed at constant speed.
/// For short path spherical linear interpolation, use the slerp function.
///
/// @param x A quaternion
/// @param y A quaternion
/// @param a Interpolation factor. The interpolation is defined beyond the range [0, 1].
/// @tparam T Value type used to build the quaternion. Supported: half, float or double.
/// @see gtc_quaternion
/// @see - slerp(detail::fquatSIMD const & x, detail::fquatSIMD const & y, T const & a)
detail::fquatSIMD mix(
detail::fquatSIMD const & x,
detail::fquatSIMD const & y,
float const & a);
/// Linear interpolation of two quaternions.
/// The interpolation is oriented.
///
/// @param x A quaternion
/// @param y A quaternion
/// @param a Interpolation factor. The interpolation is defined in the range [0, 1].
/// @tparam T Value type used to build the quaternion. Supported: half, float or double.
/// @see gtc_quaternion
detail::fquatSIMD lerp(
detail::fquatSIMD const & x,
detail::fquatSIMD const & y,
float const & a);
/// Spherical linear interpolation of two quaternions.
/// The interpolation always take the short path and the rotation is performed at constant speed.
///
/// @param x A quaternion
/// @param y A quaternion
/// @param a Interpolation factor. The interpolation is defined beyond the range [0, 1].
/// @tparam T Value type used to build the quaternion. Supported: half, float or double.
/// @see gtc_quaternion
detail::fquatSIMD slerp(
detail::fquatSIMD const & x,
detail::fquatSIMD const & y,
float const & a);
/// Faster spherical linear interpolation of two unit length quaternions.
///
/// This is the same as mix(), except for two rules:
/// 1) The two quaternions must be unit length.
/// 2) The interpolation factor (a) must be in the range [0, 1].
///
/// This will use the equivalent to fastAcos() and fastSin().
///
/// @see gtc_quaternion
/// @see - mix(detail::fquatSIMD const & x, detail::fquatSIMD const & y, T const & a)
detail::fquatSIMD fastMix(
detail::fquatSIMD const & x,
detail::fquatSIMD const & y,
float const & a);
/// Identical to fastMix() except takes the shortest path.
///
/// The same rules apply here as those in fastMix(). Both quaternions must be unit length and 'a' must be
/// in the range [0, 1].
///
/// @see - fastMix(detail::fquatSIMD const & x, detail::fquatSIMD const & y, T const & a)
/// @see - slerp(detail::fquatSIMD const & x, detail::fquatSIMD const & y, T const & a)
detail::fquatSIMD fastSlerp(
detail::fquatSIMD const & x,
detail::fquatSIMD const & y,
float const & a);
/// Returns the q conjugate.
///
/// @see gtc_quaternion
detail::fquatSIMD conjugate(
detail::fquatSIMD const & q);
/// Returns the q inverse.
///
/// @see gtc_quaternion
detail::fquatSIMD inverse(
detail::fquatSIMD const & q);
/// Build a quaternion from an angle and a normalized axis.
///
/// @param angle Angle expressed in radians if GLM_FORCE_RADIANS is define or degrees otherwise.
/// @param axis Axis of the quaternion, must be normalized.
///
/// @see gtc_quaternion
detail::fquatSIMD angleAxisSIMD(
float const & angle,
vec3 const & axis);
/// Build a quaternion from an angle and a normalized axis.
///
/// @param angle Angle expressed in radians if GLM_FORCE_RADIANS is define or degrees otherwise.
/// @param x x component of the x-axis, x, y, z must be a normalized axis
/// @param y y component of the y-axis, x, y, z must be a normalized axis
/// @param z z component of the z-axis, x, y, z must be a normalized axis
///
/// @see gtc_quaternion
detail::fquatSIMD angleAxisSIMD(
float const & angle,
float const & x,
float const & y,
float const & z);
// TODO: Move this to somewhere more appropriate. Used with fastMix() and fastSlerp().
/// Performs the equivalent of glm::fastSin() on each component of the given __m128.
__m128 fastSin(__m128 x);
/// @}
}//namespace glm
#include "simd_quat.inl"
#if (GLM_COMPILER & GLM_COMPILER_VC)
# pragma warning(pop)
#endif
#endif//(GLM_ARCH != GLM_ARCH_PURE)
#endif//GLM_GTX_simd_quat

View File

@@ -0,0 +1,629 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2013-04-22
// Updated : 2013-04-22
// Licence : This source is under MIT License
// File : glm/gtx/simd_quat.inl
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace glm{
namespace detail{
//////////////////////////////////////
// Debugging
#if 0
void print(__m128 v)
{
GLM_ALIGN(16) float result[4];
_mm_store_ps(result, v);
printf("__m128: %f %f %f %f\n", result[0], result[1], result[2], result[3]);
}
void print(const fvec4SIMD &v)
{
printf("fvec4SIMD: %f %f %f %f\n", v.x, v.y, v.z, v.w);
}
#endif
//////////////////////////////////////
// Implicit basic constructors
GLM_FUNC_QUALIFIER fquatSIMD::fquatSIMD()
#ifdef GLM_SIMD_ENABLE_DEFAULT_INIT
: Data(_mm_set_ps(1.0f, 0.0f, 0.0f, 0.0f))
#endif
{}
GLM_FUNC_QUALIFIER fquatSIMD::fquatSIMD(__m128 const & Data) :
Data(Data)
{}
GLM_FUNC_QUALIFIER fquatSIMD::fquatSIMD(fquatSIMD const & q) :
Data(q.Data)
{}
//////////////////////////////////////
// Explicit basic constructors
GLM_FUNC_QUALIFIER fquatSIMD::fquatSIMD(float const & w, float const & x, float const & y, float const & z) :
Data(_mm_set_ps(w, z, y, x))
{}
GLM_FUNC_QUALIFIER fquatSIMD::fquatSIMD(quat const & q) :
Data(_mm_set_ps(q.w, q.z, q.y, q.x))
{}
GLM_FUNC_QUALIFIER fquatSIMD::fquatSIMD(vec3 const & eulerAngles)
{
vec3 c = glm::cos(eulerAngles * 0.5f);
vec3 s = glm::sin(eulerAngles * 0.5f);
Data = _mm_set_ps(
(c.x * c.y * c.z) + (s.x * s.y * s.z),
(c.x * c.y * s.z) - (s.x * s.y * c.z),
(c.x * s.y * c.z) + (s.x * c.y * s.z),
(s.x * c.y * c.z) - (c.x * s.y * s.z));
}
//////////////////////////////////////
// Unary arithmetic operators
GLM_FUNC_QUALIFIER fquatSIMD& fquatSIMD::operator=(fquatSIMD const & q)
{
this->Data = q.Data;
return *this;
}
GLM_FUNC_QUALIFIER fquatSIMD& fquatSIMD::operator*=(float const & s)
{
this->Data = _mm_mul_ps(this->Data, _mm_set_ps1(s));
return *this;
}
GLM_FUNC_QUALIFIER fquatSIMD& fquatSIMD::operator/=(float const & s)
{
this->Data = _mm_div_ps(Data, _mm_set1_ps(s));
return *this;
}
// negate operator
GLM_FUNC_QUALIFIER fquatSIMD operator- (fquatSIMD const & q)
{
return fquatSIMD(_mm_mul_ps(q.Data, _mm_set_ps(-1.0f, -1.0f, -1.0f, -1.0f)));
}
// operator+
GLM_FUNC_QUALIFIER fquatSIMD operator+ (fquatSIMD const & q1, fquatSIMD const & q2)
{
return fquatSIMD(_mm_add_ps(q1.Data, q2.Data));
}
//operator*
GLM_FUNC_QUALIFIER fquatSIMD operator* (fquatSIMD const & q1, fquatSIMD const & q2)
{
// SSE2 STATS:
// 11 shuffle
// 8 mul
// 8 add
// SSE4 STATS:
// 3 shuffle
// 4 mul
// 4 dpps
__m128 mul0 = _mm_mul_ps(q1.Data, _mm_shuffle_ps(q2.Data, q2.Data, _MM_SHUFFLE(0, 1, 2, 3)));
__m128 mul1 = _mm_mul_ps(q1.Data, _mm_shuffle_ps(q2.Data, q2.Data, _MM_SHUFFLE(1, 0, 3, 2)));
__m128 mul2 = _mm_mul_ps(q1.Data, _mm_shuffle_ps(q2.Data, q2.Data, _MM_SHUFFLE(2, 3, 0, 1)));
__m128 mul3 = _mm_mul_ps(q1.Data, q2.Data);
# if((GLM_ARCH & GLM_ARCH_SSE4))
__m128 add0 = _mm_dp_ps(mul0, _mm_set_ps(1.0f, -1.0f, 1.0f, 1.0f), 0xff);
__m128 add1 = _mm_dp_ps(mul1, _mm_set_ps(1.0f, 1.0f, 1.0f, -1.0f), 0xff);
__m128 add2 = _mm_dp_ps(mul2, _mm_set_ps(1.0f, 1.0f, -1.0f, 1.0f), 0xff);
__m128 add3 = _mm_dp_ps(mul3, _mm_set_ps(1.0f, -1.0f, -1.0f, -1.0f), 0xff);
# else
mul0 = _mm_mul_ps(mul0, _mm_set_ps(1.0f, -1.0f, 1.0f, 1.0f));
__m128 add0 = _mm_add_ps(mul0, _mm_movehl_ps(mul0, mul0));
add0 = _mm_add_ss(add0, _mm_shuffle_ps(add0, add0, 1));
mul1 = _mm_mul_ps(mul1, _mm_set_ps(1.0f, 1.0f, 1.0f, -1.0f));
__m128 add1 = _mm_add_ps(mul1, _mm_movehl_ps(mul1, mul1));
add1 = _mm_add_ss(add1, _mm_shuffle_ps(add1, add1, 1));
mul2 = _mm_mul_ps(mul2, _mm_set_ps(1.0f, 1.0f, -1.0f, 1.0f));
__m128 add2 = _mm_add_ps(mul2, _mm_movehl_ps(mul2, mul2));
add2 = _mm_add_ss(add2, _mm_shuffle_ps(add2, add2, 1));
mul3 = _mm_mul_ps(mul3, _mm_set_ps(1.0f, -1.0f, -1.0f, -1.0f));
__m128 add3 = _mm_add_ps(mul3, _mm_movehl_ps(mul3, mul3));
add3 = _mm_add_ss(add3, _mm_shuffle_ps(add3, add3, 1));
#endif
// This SIMD code is a politically correct way of doing this, but in every test I've tried it has been slower than
// the final code below. I'll keep this here for reference - maybe somebody else can do something better...
//
//__m128 xxyy = _mm_shuffle_ps(add0, add1, _MM_SHUFFLE(0, 0, 0, 0));
//__m128 zzww = _mm_shuffle_ps(add2, add3, _MM_SHUFFLE(0, 0, 0, 0));
//
//return _mm_shuffle_ps(xxyy, zzww, _MM_SHUFFLE(2, 0, 2, 0));
float x;
float y;
float z;
float w;
_mm_store_ss(&x, add0);
_mm_store_ss(&y, add1);
_mm_store_ss(&z, add2);
_mm_store_ss(&w, add3);
return detail::fquatSIMD(w, x, y, z);
}
GLM_FUNC_QUALIFIER fvec4SIMD operator* (fquatSIMD const & q, fvec4SIMD const & v)
{
static const __m128 two = _mm_set1_ps(2.0f);
__m128 q_wwww = _mm_shuffle_ps(q.Data, q.Data, _MM_SHUFFLE(3, 3, 3, 3));
__m128 q_swp0 = _mm_shuffle_ps(q.Data, q.Data, _MM_SHUFFLE(3, 0, 2, 1));
__m128 q_swp1 = _mm_shuffle_ps(q.Data, q.Data, _MM_SHUFFLE(3, 1, 0, 2));
__m128 v_swp0 = _mm_shuffle_ps(v.Data, v.Data, _MM_SHUFFLE(3, 0, 2, 1));
__m128 v_swp1 = _mm_shuffle_ps(v.Data, v.Data, _MM_SHUFFLE(3, 1, 0, 2));
__m128 uv = _mm_sub_ps(_mm_mul_ps(q_swp0, v_swp1), _mm_mul_ps(q_swp1, v_swp0));
__m128 uv_swp0 = _mm_shuffle_ps(uv, uv, _MM_SHUFFLE(3, 0, 2, 1));
__m128 uv_swp1 = _mm_shuffle_ps(uv, uv, _MM_SHUFFLE(3, 1, 0, 2));
__m128 uuv = _mm_sub_ps(_mm_mul_ps(q_swp0, uv_swp1), _mm_mul_ps(q_swp1, uv_swp0));
uv = _mm_mul_ps(uv, _mm_mul_ps(q_wwww, two));
uuv = _mm_mul_ps(uuv, two);
return _mm_add_ps(v.Data, _mm_add_ps(uv, uuv));
}
GLM_FUNC_QUALIFIER fvec4SIMD operator* (fvec4SIMD const & v, fquatSIMD const & q)
{
return glm::inverse(q) * v;
}
GLM_FUNC_QUALIFIER fquatSIMD operator* (fquatSIMD const & q, float s)
{
return fquatSIMD(_mm_mul_ps(q.Data, _mm_set1_ps(s)));
}
GLM_FUNC_QUALIFIER fquatSIMD operator* (float s, fquatSIMD const & q)
{
return fquatSIMD(_mm_mul_ps(_mm_set1_ps(s), q.Data));
}
//operator/
GLM_FUNC_QUALIFIER fquatSIMD operator/ (fquatSIMD const & q, float s)
{
return fquatSIMD(_mm_div_ps(q.Data, _mm_set1_ps(s)));
}
}//namespace detail
GLM_FUNC_QUALIFIER quat quat_cast
(
detail::fquatSIMD const & x
)
{
GLM_ALIGN(16) quat Result;
_mm_store_ps(&Result[0], x.Data);
return Result;
}
template <typename T>
GLM_FUNC_QUALIFIER detail::fquatSIMD quatSIMD_cast_impl(const T m0[], const T m1[], const T m2[])
{
T trace = m0[0] + m1[1] + m2[2] + T(1.0);
if (trace > T(0))
{
T s = static_cast<T>(0.5) / sqrt(trace);
return _mm_set_ps(
static_cast<float>(T(0.25) / s),
static_cast<float>((m0[1] - m1[0]) * s),
static_cast<float>((m2[0] - m0[2]) * s),
static_cast<float>((m1[2] - m2[1]) * s));
}
else
{
if (m0[0] > m1[1])
{
if (m0[0] > m2[2])
{
// X is biggest.
T s = sqrt(m0[0] - m1[1] - m2[2] + T(1.0)) * T(0.5);
return _mm_set_ps(
static_cast<float>((m1[2] - m2[1]) * s),
static_cast<float>((m2[0] + m0[2]) * s),
static_cast<float>((m0[1] + m1[0]) * s),
static_cast<float>(T(0.5) * s));
}
}
else
{
if (m1[1] > m2[2])
{
// Y is biggest.
T s = sqrt(m1[1] - m0[0] - m2[2] + T(1.0)) * T(0.5);
return _mm_set_ps(
static_cast<float>((m2[0] - m0[2]) * s),
static_cast<float>((m1[2] + m2[1]) * s),
static_cast<float>(T(0.5) * s),
static_cast<float>((m0[1] + m1[0]) * s));
}
}
// Z is biggest.
T s = sqrt(m2[2] - m0[0] - m1[1] + T(1.0)) * T(0.5);
return _mm_set_ps(
static_cast<float>((m0[1] - m1[0]) * s),
static_cast<float>(T(0.5) * s),
static_cast<float>((m1[2] + m2[1]) * s),
static_cast<float>((m2[0] + m0[2]) * s));
}
}
GLM_FUNC_QUALIFIER detail::fquatSIMD quatSIMD_cast
(
detail::fmat4x4SIMD const & m
)
{
// Scalar implementation for now.
GLM_ALIGN(16) float m0[4];
GLM_ALIGN(16) float m1[4];
GLM_ALIGN(16) float m2[4];
_mm_store_ps(m0, m[0].Data);
_mm_store_ps(m1, m[1].Data);
_mm_store_ps(m2, m[2].Data);
return quatSIMD_cast_impl(m0, m1, m2);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::fquatSIMD quatSIMD_cast
(
detail::tmat4x4<T, P> const & m
)
{
return quatSIMD_cast_impl(&m[0][0], &m[1][0], &m[2][0]);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER detail::fquatSIMD quatSIMD_cast
(
detail::tmat3x3<T, P> const & m
)
{
return quatSIMD_cast_impl(&m[0][0], &m[1][0], &m[2][0]);
}
GLM_FUNC_QUALIFIER detail::fmat4x4SIMD mat4SIMD_cast
(
detail::fquatSIMD const & q
)
{
detail::fmat4x4SIMD result;
__m128 _wwww = _mm_shuffle_ps(q.Data, q.Data, _MM_SHUFFLE(3, 3, 3, 3));
__m128 _xyzw = q.Data;
__m128 _zxyw = _mm_shuffle_ps(q.Data, q.Data, _MM_SHUFFLE(3, 1, 0, 2));
__m128 _yzxw = _mm_shuffle_ps(q.Data, q.Data, _MM_SHUFFLE(3, 0, 2, 1));
__m128 _xyzw2 = _mm_add_ps(_xyzw, _xyzw);
__m128 _zxyw2 = _mm_shuffle_ps(_xyzw2, _xyzw2, _MM_SHUFFLE(3, 1, 0, 2));
__m128 _yzxw2 = _mm_shuffle_ps(_xyzw2, _xyzw2, _MM_SHUFFLE(3, 0, 2, 1));
__m128 _tmp0 = _mm_sub_ps(_mm_set1_ps(1.0f), _mm_mul_ps(_yzxw2, _yzxw));
_tmp0 = _mm_sub_ps(_tmp0, _mm_mul_ps(_zxyw2, _zxyw));
__m128 _tmp1 = _mm_mul_ps(_yzxw2, _xyzw);
_tmp1 = _mm_add_ps(_tmp1, _mm_mul_ps(_zxyw2, _wwww));
__m128 _tmp2 = _mm_mul_ps(_zxyw2, _xyzw);
_tmp2 = _mm_sub_ps(_tmp2, _mm_mul_ps(_yzxw2, _wwww));
// There's probably a better, more politically correct way of doing this...
result[0].Data = _mm_set_ps(
0.0f,
reinterpret_cast<float*>(&_tmp2)[0],
reinterpret_cast<float*>(&_tmp1)[0],
reinterpret_cast<float*>(&_tmp0)[0]);
result[1].Data = _mm_set_ps(
0.0f,
reinterpret_cast<float*>(&_tmp1)[1],
reinterpret_cast<float*>(&_tmp0)[1],
reinterpret_cast<float*>(&_tmp2)[1]);
result[2].Data = _mm_set_ps(
0.0f,
reinterpret_cast<float*>(&_tmp0)[2],
reinterpret_cast<float*>(&_tmp2)[2],
reinterpret_cast<float*>(&_tmp1)[2]);
result[3].Data = _mm_set_ps(
1.0f,
0.0f,
0.0f,
0.0f);
return result;
}
GLM_FUNC_QUALIFIER mat4 mat4_cast
(
detail::fquatSIMD const & q
)
{
return mat4_cast(mat4SIMD_cast(q));
}
GLM_FUNC_QUALIFIER float length
(
detail::fquatSIMD const & q
)
{
return glm::sqrt(dot(q, q));
}
GLM_FUNC_QUALIFIER detail::fquatSIMD normalize
(
detail::fquatSIMD const & q
)
{
return _mm_mul_ps(q.Data, _mm_set1_ps(1.0f / length(q)));
}
GLM_FUNC_QUALIFIER float dot
(
detail::fquatSIMD const & q1,
detail::fquatSIMD const & q2
)
{
float result;
_mm_store_ss(&result, detail::sse_dot_ps(q1.Data, q2.Data));
return result;
}
GLM_FUNC_QUALIFIER detail::fquatSIMD mix
(
detail::fquatSIMD const & x,
detail::fquatSIMD const & y,
float const & a
)
{
float cosTheta = dot(x, y);
if (cosTheta > 1.0f - glm::epsilon<float>())
{
return _mm_add_ps(x.Data, _mm_mul_ps(_mm_set1_ps(a), _mm_sub_ps(y.Data, x.Data)));
}
else
{
float angle = glm::acos(cosTheta);
float s0 = glm::sin((1.0f - a) * angle);
float s1 = glm::sin(a * angle);
float d = 1.0f / glm::sin(angle);
return (s0 * x + s1 * y) * d;
}
}
GLM_FUNC_QUALIFIER detail::fquatSIMD lerp
(
detail::fquatSIMD const & x,
detail::fquatSIMD const & y,
float const & a
)
{
// Lerp is only defined in [0, 1]
assert(a >= 0.0f);
assert(a <= 1.0f);
return _mm_add_ps(x.Data, _mm_mul_ps(_mm_set1_ps(a), _mm_sub_ps(y.Data, x.Data)));
}
GLM_FUNC_QUALIFIER detail::fquatSIMD slerp
(
detail::fquatSIMD const & x,
detail::fquatSIMD const & y,
float const & a
)
{
detail::fquatSIMD z = y;
float cosTheta = dot(x, y);
// If cosTheta < 0, the interpolation will take the long way around the sphere.
// To fix this, one quat must be negated.
if (cosTheta < 0.0f)
{
z = -y;
cosTheta = -cosTheta;
}
// Perform a linear interpolation when cosTheta is close to 1 to avoid side effect of sin(angle) becoming a zero denominator
if(cosTheta > 1.0f - epsilon<float>())
{
return _mm_add_ps(x.Data, _mm_mul_ps(_mm_set1_ps(a), _mm_sub_ps(y.Data, x.Data)));
}
else
{
float angle = glm::acos(cosTheta);
float s0 = glm::sin((1.0f - a) * angle);
float s1 = glm::sin(a * angle);
float d = 1.0f / glm::sin(angle);
return (s0 * x + s1 * y) * d;
}
}
GLM_FUNC_QUALIFIER detail::fquatSIMD fastMix
(
detail::fquatSIMD const & x,
detail::fquatSIMD const & y,
float const & a
)
{
float cosTheta = dot(x, y);
if (cosTheta > 1.0f - glm::epsilon<float>())
{
return _mm_add_ps(x.Data, _mm_mul_ps(_mm_set1_ps(a), _mm_sub_ps(y.Data, x.Data)));
}
else
{
float angle = glm::fastAcos(cosTheta);
__m128 s = glm::fastSin(_mm_set_ps((1.0f - a) * angle, a * angle, angle, 0.0f));
__m128 s0 = _mm_shuffle_ps(s, s, _MM_SHUFFLE(3, 3, 3, 3));
__m128 s1 = _mm_shuffle_ps(s, s, _MM_SHUFFLE(2, 2, 2, 2));
__m128 d = _mm_div_ps(_mm_set1_ps(1.0f), _mm_shuffle_ps(s, s, _MM_SHUFFLE(1, 1, 1, 1)));
return _mm_mul_ps(_mm_add_ps(_mm_mul_ps(s0, x.Data), _mm_mul_ps(s1, y.Data)), d);
}
}
GLM_FUNC_QUALIFIER detail::fquatSIMD fastSlerp
(
detail::fquatSIMD const & x,
detail::fquatSIMD const & y,
float const & a
)
{
detail::fquatSIMD z = y;
float cosTheta = dot(x, y);
if (cosTheta < 0.0f)
{
z = -y;
cosTheta = -cosTheta;
}
if(cosTheta > 1.0f - epsilon<float>())
{
return _mm_add_ps(x.Data, _mm_mul_ps(_mm_set1_ps(a), _mm_sub_ps(y.Data, x.Data)));
}
else
{
float angle = glm::fastAcos(cosTheta);
__m128 s = glm::fastSin(_mm_set_ps((1.0f - a) * angle, a * angle, angle, 0.0f));
__m128 s0 = _mm_shuffle_ps(s, s, _MM_SHUFFLE(3, 3, 3, 3));
__m128 s1 = _mm_shuffle_ps(s, s, _MM_SHUFFLE(2, 2, 2, 2));
__m128 d = _mm_div_ps(_mm_set1_ps(1.0f), _mm_shuffle_ps(s, s, _MM_SHUFFLE(1, 1, 1, 1)));
return _mm_mul_ps(_mm_add_ps(_mm_mul_ps(s0, x.Data), _mm_mul_ps(s1, y.Data)), d);
}
}
GLM_FUNC_QUALIFIER detail::fquatSIMD conjugate
(
detail::fquatSIMD const & q
)
{
return detail::fquatSIMD(_mm_mul_ps(q.Data, _mm_set_ps(1.0f, -1.0f, -1.0f, -1.0f)));
}
GLM_FUNC_QUALIFIER detail::fquatSIMD inverse
(
detail::fquatSIMD const & q
)
{
return conjugate(q) / dot(q, q);
}
GLM_FUNC_QUALIFIER detail::fquatSIMD angleAxisSIMD
(
float const & angle,
vec3 const & v
)
{
#ifdef GLM_FORCE_RADIANS
float a(angle);
#else
# pragma message("GLM: rotateZ function taking degrees as parameters is deprecated. #define GLM_FORCE_RADIANS before including GLM headers to remove this message.")
float a(glm::radians(angle));
#endif
float s = glm::sin(a * 0.5f);
return _mm_set_ps(
glm::cos(a * 0.5f),
v.z * s,
v.y * s,
v.x * s);
}
GLM_FUNC_QUALIFIER detail::fquatSIMD angleAxisSIMD
(
float const & angle,
float const & x,
float const & y,
float const & z
)
{
return angleAxisSIMD(angle, vec3(x, y, z));
}
GLM_FUNC_QUALIFIER __m128 fastSin(__m128 x)
{
static const __m128 c0 = _mm_set1_ps(0.16666666666666666666666666666667f);
static const __m128 c1 = _mm_set1_ps(0.00833333333333333333333333333333f);
static const __m128 c2 = _mm_set1_ps(0.00019841269841269841269841269841f);
__m128 x3 = _mm_mul_ps(x, _mm_mul_ps(x, x));
__m128 x5 = _mm_mul_ps(x3, _mm_mul_ps(x, x));
__m128 x7 = _mm_mul_ps(x5, _mm_mul_ps(x, x));
__m128 y0 = _mm_mul_ps(x3, c0);
__m128 y1 = _mm_mul_ps(x5, c1);
__m128 y2 = _mm_mul_ps(x7, c2);
return _mm_sub_ps(_mm_add_ps(_mm_sub_ps(x, y0), y1), y2);
}
}//namespace glm

View File

@@ -0,0 +1,574 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_simd_vec4
/// @file glm/gtx/simd_vec4.hpp
/// @date 2009-05-07 / 2011-06-07
/// @author Christophe Riccio
///
/// @see core (dependence)
///
/// @defgroup gtx_simd_vec4 GLM_GTX_simd_vec4
/// @ingroup gtx
///
/// @brief SIMD implementation of vec4 type.
///
/// <glm/gtx/simd_vec4.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTX_simd_vec4
#define GLM_GTX_simd_vec4
// Dependency:
#include "../glm.hpp"
#if(GLM_ARCH != GLM_ARCH_PURE)
#if(GLM_ARCH & GLM_ARCH_SSE2)
# include "../detail/intrinsic_common.hpp"
# include "../detail/intrinsic_geometric.hpp"
# include "../detail/intrinsic_integer.hpp"
#else
# error "GLM: GLM_GTX_simd_vec4 requires compiler support of SSE2 through intrinsics"
#endif
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTX_simd_vec4 extension included")
#endif
// Warning silencer for nameless struct/union.
#if (GLM_COMPILER & GLM_COMPILER_VC)
# pragma warning(push)
# pragma warning(disable:4201) // warning C4201: nonstandard extension used : nameless struct/union
#endif
namespace glm
{
enum comp
{
X = 0,
R = 0,
S = 0,
Y = 1,
G = 1,
T = 1,
Z = 2,
B = 2,
P = 2,
W = 3,
A = 3,
Q = 3
};
}//namespace glm
namespace glm{
namespace detail
{
/// 4-dimensional vector implemented using SIMD SEE intrinsics.
/// \ingroup gtx_simd_vec4
GLM_ALIGNED_STRUCT(16) fvec4SIMD
{
enum ctor{null};
typedef __m128 value_type;
typedef std::size_t size_type;
static size_type value_size();
typedef fvec4SIMD type;
typedef tvec4<bool, highp> bool_type;
#ifdef GLM_SIMD_ENABLE_XYZW_UNION
union
{
__m128 Data;
struct {float x, y, z, w;};
};
#else
__m128 Data;
#endif
//////////////////////////////////////
// Implicit basic constructors
fvec4SIMD();
fvec4SIMD(__m128 const & Data);
fvec4SIMD(fvec4SIMD const & v);
//////////////////////////////////////
// Explicit basic constructors
explicit fvec4SIMD(
ctor);
explicit fvec4SIMD(
float const & s);
explicit fvec4SIMD(
float const & x,
float const & y,
float const & z,
float const & w);
explicit fvec4SIMD(
vec4 const & v);
////////////////////////////////////////
//// Conversion vector constructors
fvec4SIMD(vec2 const & v, float const & s1, float const & s2);
fvec4SIMD(float const & s1, vec2 const & v, float const & s2);
fvec4SIMD(float const & s1, float const & s2, vec2 const & v);
fvec4SIMD(vec3 const & v, float const & s);
fvec4SIMD(float const & s, vec3 const & v);
fvec4SIMD(vec2 const & v1, vec2 const & v2);
//fvec4SIMD(ivec4SIMD const & v);
//////////////////////////////////////
// Unary arithmetic operators
fvec4SIMD& operator= (fvec4SIMD const & v);
fvec4SIMD& operator+=(fvec4SIMD const & v);
fvec4SIMD& operator-=(fvec4SIMD const & v);
fvec4SIMD& operator*=(fvec4SIMD const & v);
fvec4SIMD& operator/=(fvec4SIMD const & v);
fvec4SIMD& operator+=(float const & s);
fvec4SIMD& operator-=(float const & s);
fvec4SIMD& operator*=(float const & s);
fvec4SIMD& operator/=(float const & s);
fvec4SIMD& operator++();
fvec4SIMD& operator--();
//////////////////////////////////////
// Swizzle operators
template <comp X, comp Y, comp Z, comp W>
fvec4SIMD& swizzle();
template <comp X, comp Y, comp Z, comp W>
fvec4SIMD swizzle() const;
template <comp X, comp Y, comp Z>
fvec4SIMD swizzle() const;
template <comp X, comp Y>
fvec4SIMD swizzle() const;
template <comp X>
fvec4SIMD swizzle() const;
};
}//namespace detail
typedef glm::detail::fvec4SIMD simdVec4;
/// @addtogroup gtx_simd_vec4
/// @{
//! Convert a simdVec4 to a vec4.
/// @see gtx_simd_vec4
vec4 vec4_cast(
detail::fvec4SIMD const & x);
//! Returns x if x >= 0; otherwise, it returns -x.
/// @see gtx_simd_vec4
detail::fvec4SIMD abs(detail::fvec4SIMD const & x);
//! Returns 1.0 if x > 0, 0.0 if x = 0, or -1.0 if x < 0.
/// @see gtx_simd_vec4
detail::fvec4SIMD sign(detail::fvec4SIMD const & x);
//! Returns a value equal to the nearest integer that is less then or equal to x.
/// @see gtx_simd_vec4
detail::fvec4SIMD floor(detail::fvec4SIMD const & x);
//! Returns a value equal to the nearest integer to x
//! whose absolute value is not larger than the absolute value of x.
/// @see gtx_simd_vec4
detail::fvec4SIMD trunc(detail::fvec4SIMD const & x);
//! Returns a value equal to the nearest integer to x.
//! The fraction 0.5 will round in a direction chosen by the
//! implementation, presumably the direction that is fastest.
//! This includes the possibility that round(x) returns the
//! same value as roundEven(x) for all values of x.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD round(detail::fvec4SIMD const & x);
//! Returns a value equal to the nearest integer to x.
//! A fractional part of 0.5 will round toward the nearest even
//! integer. (Both 3.5 and 4.5 for x will return 4.0.)
///
/// @see gtx_simd_vec4
//detail::fvec4SIMD roundEven(detail::fvec4SIMD const & x);
//! Returns a value equal to the nearest integer
//! that is greater than or equal to x.
/// @see gtx_simd_vec4
detail::fvec4SIMD ceil(detail::fvec4SIMD const & x);
//! Return x - floor(x).
///
/// @see gtx_simd_vec4
detail::fvec4SIMD fract(detail::fvec4SIMD const & x);
//! Modulus. Returns x - y * floor(x / y)
//! for each component in x using the floating point value y.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD mod(
detail::fvec4SIMD const & x,
detail::fvec4SIMD const & y);
//! Modulus. Returns x - y * floor(x / y)
//! for each component in x using the floating point value y.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD mod(
detail::fvec4SIMD const & x,
float const & y);
//! Returns the fractional part of x and sets i to the integer
//! part (as a whole number floating point value). Both the
//! return value and the output parameter will have the same
//! sign as x.
//! (From GLM_GTX_simd_vec4 extension, common function)
//detail::fvec4SIMD modf(
// detail::fvec4SIMD const & x,
// detail::fvec4SIMD & i);
//! Returns y if y < x; otherwise, it returns x.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD min(
detail::fvec4SIMD const & x,
detail::fvec4SIMD const & y);
detail::fvec4SIMD min(
detail::fvec4SIMD const & x,
float const & y);
//! Returns y if x < y; otherwise, it returns x.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD max(
detail::fvec4SIMD const & x,
detail::fvec4SIMD const & y);
detail::fvec4SIMD max(
detail::fvec4SIMD const & x,
float const & y);
//! Returns min(max(x, minVal), maxVal) for each component in x
//! using the floating-point values minVal and maxVal.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD clamp(
detail::fvec4SIMD const & x,
detail::fvec4SIMD const & minVal,
detail::fvec4SIMD const & maxVal);
detail::fvec4SIMD clamp(
detail::fvec4SIMD const & x,
float const & minVal,
float const & maxVal);
//! \return If genTypeU is a floating scalar or vector:
//! Returns x * (1.0 - a) + y * a, i.e., the linear blend of
//! x and y using the floating-point value a.
//! The value for a is not restricted to the range [0, 1].
//!
//! \return If genTypeU is a boolean scalar or vector:
//! Selects which vector each returned component comes
//! from. For a component of a that is false, the
//! corresponding component of x is returned. For a
//! component of a that is true, the corresponding
//! component of y is returned. Components of x and y that
//! are not selected are allowed to be invalid floating point
//! values and will have no effect on the results. Thus, this
//! provides different functionality than
//! genType mix(genType x, genType y, genType(a))
//! where a is a Boolean vector.
//!
//! From GLSL 1.30.08 specification, section 8.3
//!
//! \param[in] x Floating point scalar or vector.
//! \param[in] y Floating point scalar or vector.
//! \param[in] a Floating point or boolean scalar or vector.
//!
/// \todo Test when 'a' is a boolean.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD mix(
detail::fvec4SIMD const & x,
detail::fvec4SIMD const & y,
detail::fvec4SIMD const & a);
//! Returns 0.0 if x < edge, otherwise it returns 1.0.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD step(
detail::fvec4SIMD const & edge,
detail::fvec4SIMD const & x);
detail::fvec4SIMD step(
float const & edge,
detail::fvec4SIMD const & x);
//! Returns 0.0 if x <= edge0 and 1.0 if x >= edge1 and
//! performs smooth Hermite interpolation between 0 and 1
//! when edge0 < x < edge1. This is useful in cases where
//! you would want a threshold function with a smooth
//! transition. This is equivalent to:
//! genType t;
//! t = clamp ((x - edge0) / (edge1 - edge0), 0, 1);
//! return t * t * (3 - 2 * t);
//! Results are undefined if edge0 >= edge1.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD smoothstep(
detail::fvec4SIMD const & edge0,
detail::fvec4SIMD const & edge1,
detail::fvec4SIMD const & x);
detail::fvec4SIMD smoothstep(
float const & edge0,
float const & edge1,
detail::fvec4SIMD const & x);
//! Returns true if x holds a NaN (not a number)
//! representation in the underlying implementation's set of
//! floating point representations. Returns false otherwise,
//! including for implementations with no NaN
//! representations.
///
/// @see gtx_simd_vec4
//bvec4 isnan(detail::fvec4SIMD const & x);
//! Returns true if x holds a positive infinity or negative
//! infinity representation in the underlying implementation's
//! set of floating point representations. Returns false
//! otherwise, including for implementations with no infinity
//! representations.
///
/// @see gtx_simd_vec4
//bvec4 isinf(detail::fvec4SIMD const & x);
//! Returns a signed or unsigned integer value representing
//! the encoding of a floating-point value. The floatingpoint
//! value's bit-level representation is preserved.
///
/// @see gtx_simd_vec4
//detail::ivec4SIMD floatBitsToInt(detail::fvec4SIMD const & value);
//! Returns a floating-point value corresponding to a signed
//! or unsigned integer encoding of a floating-point value.
//! If an inf or NaN is passed in, it will not signal, and the
//! resulting floating point value is unspecified. Otherwise,
//! the bit-level representation is preserved.
///
/// @see gtx_simd_vec4
//detail::fvec4SIMD intBitsToFloat(detail::ivec4SIMD const & value);
//! Computes and returns a * b + c.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD fma(
detail::fvec4SIMD const & a,
detail::fvec4SIMD const & b,
detail::fvec4SIMD const & c);
//! Splits x into a floating-point significand in the range
//! [0.5, 1.0) and an integral exponent of two, such that:
//! x = significand * exp(2, exponent)
//! The significand is returned by the function and the
//! exponent is returned in the parameter exp. For a
//! floating-point value of zero, the significant and exponent
//! are both zero. For a floating-point value that is an
//! infinity or is not a number, the results are undefined.
///
/// @see gtx_simd_vec4
//detail::fvec4SIMD frexp(detail::fvec4SIMD const & x, detail::ivec4SIMD & exp);
//! Builds a floating-point number from x and the
//! corresponding integral exponent of two in exp, returning:
//! significand * exp(2, exponent)
//! If this product is too large to be represented in the
//! floating-point type, the result is undefined.
///
/// @see gtx_simd_vec4
//detail::fvec4SIMD ldexp(detail::fvec4SIMD const & x, detail::ivec4SIMD const & exp);
//! Returns the length of x, i.e., sqrt(x * x).
///
/// @see gtx_simd_vec4
float length(
detail::fvec4SIMD const & x);
//! Returns the length of x, i.e., sqrt(x * x).
//! Less accurate but much faster than simdLength.
///
/// @see gtx_simd_vec4
float fastLength(
detail::fvec4SIMD const & x);
//! Returns the length of x, i.e., sqrt(x * x).
//! Slightly more accurate but much slower than simdLength.
///
/// @see gtx_simd_vec4
float niceLength(
detail::fvec4SIMD const & x);
//! Returns the length of x, i.e., sqrt(x * x).
///
/// @see gtx_simd_vec4
detail::fvec4SIMD length4(
detail::fvec4SIMD const & x);
//! Returns the length of x, i.e., sqrt(x * x).
//! Less accurate but much faster than simdLength4.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD fastLength4(
detail::fvec4SIMD const & x);
//! Returns the length of x, i.e., sqrt(x * x).
//! Slightly more accurate but much slower than simdLength4.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD niceLength4(
detail::fvec4SIMD const & x);
//! Returns the distance betwwen p0 and p1, i.e., length(p0 - p1).
///
/// @see gtx_simd_vec4
float distance(
detail::fvec4SIMD const & p0,
detail::fvec4SIMD const & p1);
//! Returns the distance betwwen p0 and p1, i.e., length(p0 - p1).
///
/// @see gtx_simd_vec4
detail::fvec4SIMD distance4(
detail::fvec4SIMD const & p0,
detail::fvec4SIMD const & p1);
//! Returns the dot product of x and y, i.e., result = x * y.
///
/// @see gtx_simd_vec4
float simdDot(
detail::fvec4SIMD const & x,
detail::fvec4SIMD const & y);
//! Returns the dot product of x and y, i.e., result = x * y.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD dot4(
detail::fvec4SIMD const & x,
detail::fvec4SIMD const & y);
//! Returns the cross product of x and y.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD cross(
detail::fvec4SIMD const & x,
detail::fvec4SIMD const & y);
//! Returns a vector in the same direction as x but with length of 1.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD normalize(
detail::fvec4SIMD const & x);
//! Returns a vector in the same direction as x but with length of 1.
//! Less accurate but much faster than simdNormalize.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD fastNormalize(
detail::fvec4SIMD const & x);
//! If dot(Nref, I) < 0.0, return N, otherwise, return -N.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD simdFaceforward(
detail::fvec4SIMD const & N,
detail::fvec4SIMD const & I,
detail::fvec4SIMD const & Nref);
//! For the incident vector I and surface orientation N,
//! returns the reflection direction : result = I - 2.0 * dot(N, I) * N.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD reflect(
detail::fvec4SIMD const & I,
detail::fvec4SIMD const & N);
//! For the incident vector I and surface normal N,
//! and the ratio of indices of refraction eta,
//! return the refraction vector.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD refract(
detail::fvec4SIMD const & I,
detail::fvec4SIMD const & N,
float const & eta);
//! Returns the positive square root of x.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD sqrt(
detail::fvec4SIMD const & x);
//! Returns the positive square root of x with the nicest quality but very slow.
//! Slightly more accurate but much slower than simdSqrt.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD niceSqrt(
detail::fvec4SIMD const & x);
//! Returns the positive square root of x
//! Less accurate but much faster than sqrt.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD fastSqrt(
detail::fvec4SIMD const & x);
//! Returns the reciprocal of the positive square root of x.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD inversesqrt(
detail::fvec4SIMD const & x);
//! Returns the reciprocal of the positive square root of x.
//! Faster than inversesqrt but less accurate.
///
/// @see gtx_simd_vec4
detail::fvec4SIMD fastInversesqrt(
detail::fvec4SIMD const & x);
/// @}
}//namespace glm
#include "simd_vec4.inl"
#if (GLM_COMPILER & GLM_COMPILER_VC)
# pragma warning(pop)
#endif
#endif//(GLM_ARCH != GLM_ARCH_PURE)
#endif//GLM_GTX_simd_vec4

View File

@@ -0,0 +1,727 @@
///////////////////////////////////////////////////////////////////////////////////////////////////
// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
///////////////////////////////////////////////////////////////////////////////////////////////////
// Created : 2009-05-07
// Updated : 2009-05-07
// Licence : This source is under MIT License
// File : glm/gtx/simd_vec4.inl
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace glm{
namespace detail{
template <int Value>
struct mask
{
enum{value = Value};
};
//////////////////////////////////////
// Implicit basic constructors
GLM_FUNC_QUALIFIER fvec4SIMD::fvec4SIMD()
#ifdef GLM_SIMD_ENABLE_DEFAULT_INIT
: Data(_mm_set_ps(0.0f, 0.0f, 0.0f, 0.0f))
#endif
{}
GLM_FUNC_QUALIFIER fvec4SIMD::fvec4SIMD(__m128 const & Data) :
Data(Data)
{}
GLM_FUNC_QUALIFIER fvec4SIMD::fvec4SIMD(fvec4SIMD const & v) :
Data(v.Data)
{}
GLM_FUNC_QUALIFIER fvec4SIMD::fvec4SIMD(vec4 const & v) :
Data(_mm_set_ps(v.w, v.z, v.y, v.x))
{}
//////////////////////////////////////
// Explicit basic constructors
GLM_FUNC_QUALIFIER fvec4SIMD::fvec4SIMD(float const & s) :
Data(_mm_set1_ps(s))
{}
GLM_FUNC_QUALIFIER fvec4SIMD::fvec4SIMD(float const & x, float const & y, float const & z, float const & w) :
// Data(_mm_setr_ps(x, y, z, w))
Data(_mm_set_ps(w, z, y, x))
{}
/*
GLM_FUNC_QUALIFIER fvec4SIMD::fvec4SIMD(float const v[4]) :
Data(_mm_load_ps(v))
{}
*/
//////////////////////////////////////
// Swizzle constructors
//fvec4SIMD(ref4<float> const & r);
//////////////////////////////////////
// Conversion vector constructors
GLM_FUNC_QUALIFIER fvec4SIMD::fvec4SIMD(vec2 const & v, float const & s1, float const & s2) :
Data(_mm_set_ps(s2, s1, v.y, v.x))
{}
GLM_FUNC_QUALIFIER fvec4SIMD::fvec4SIMD(float const & s1, vec2 const & v, float const & s2) :
Data(_mm_set_ps(s2, v.y, v.x, s1))
{}
GLM_FUNC_QUALIFIER fvec4SIMD::fvec4SIMD(float const & s1, float const & s2, vec2 const & v) :
Data(_mm_set_ps(v.y, v.x, s2, s1))
{}
GLM_FUNC_QUALIFIER fvec4SIMD::fvec4SIMD(vec3 const & v, float const & s) :
Data(_mm_set_ps(s, v.z, v.y, v.x))
{}
GLM_FUNC_QUALIFIER fvec4SIMD::fvec4SIMD(float const & s, vec3 const & v) :
Data(_mm_set_ps(v.z, v.y, v.x, s))
{}
GLM_FUNC_QUALIFIER fvec4SIMD::fvec4SIMD(vec2 const & v1, vec2 const & v2) :
Data(_mm_set_ps(v2.y, v2.x, v1.y, v1.x))
{}
//GLM_FUNC_QUALIFIER fvec4SIMD::fvec4SIMD(ivec4SIMD const & v) :
// Data(_mm_cvtepi32_ps(v.Data))
//{}
//////////////////////////////////////
// Unary arithmetic operators
GLM_FUNC_QUALIFIER fvec4SIMD& fvec4SIMD::operator=(fvec4SIMD const & v)
{
this->Data = v.Data;
return *this;
}
GLM_FUNC_QUALIFIER fvec4SIMD& fvec4SIMD::operator+=(float const & s)
{
this->Data = _mm_add_ps(Data, _mm_set_ps1(s));
return *this;
}
GLM_FUNC_QUALIFIER fvec4SIMD& fvec4SIMD::operator+=(fvec4SIMD const & v)
{
this->Data = _mm_add_ps(this->Data , v.Data);
return *this;
}
GLM_FUNC_QUALIFIER fvec4SIMD& fvec4SIMD::operator-=(float const & s)
{
this->Data = _mm_sub_ps(Data, _mm_set_ps1(s));
return *this;
}
GLM_FUNC_QUALIFIER fvec4SIMD& fvec4SIMD::operator-=(fvec4SIMD const & v)
{
this->Data = _mm_sub_ps(this->Data , v.Data);
return *this;
}
GLM_FUNC_QUALIFIER fvec4SIMD& fvec4SIMD::operator*=(float const & s)
{
this->Data = _mm_mul_ps(this->Data, _mm_set_ps1(s));
return *this;
}
GLM_FUNC_QUALIFIER fvec4SIMD& fvec4SIMD::operator*=(fvec4SIMD const & v)
{
this->Data = _mm_mul_ps(this->Data , v.Data);
return *this;
}
GLM_FUNC_QUALIFIER fvec4SIMD& fvec4SIMD::operator/=(float const & s)
{
this->Data = _mm_div_ps(Data, _mm_set1_ps(s));
return *this;
}
GLM_FUNC_QUALIFIER fvec4SIMD& fvec4SIMD::operator/=(fvec4SIMD const & v)
{
this->Data = _mm_div_ps(this->Data , v.Data);
return *this;
}
GLM_FUNC_QUALIFIER fvec4SIMD& fvec4SIMD::operator++()
{
this->Data = _mm_add_ps(this->Data , glm::detail::one);
return *this;
}
GLM_FUNC_QUALIFIER fvec4SIMD& fvec4SIMD::operator--()
{
this->Data = _mm_sub_ps(this->Data, glm::detail::one);
return *this;
}
//////////////////////////////////////
// Swizzle operators
template <comp X, comp Y, comp Z, comp W>
GLM_FUNC_QUALIFIER fvec4SIMD fvec4SIMD::swizzle() const
{
__m128 Data = _mm_shuffle_ps(
this->Data, this->Data,
mask<(W << 6) | (Z << 4) | (Y << 2) | (X << 0)>::value);
return fvec4SIMD(Data);
}
template <comp X, comp Y, comp Z, comp W>
GLM_FUNC_QUALIFIER fvec4SIMD& fvec4SIMD::swizzle()
{
this->Data = _mm_shuffle_ps(
this->Data, this->Data,
mask<(W << 6) | (Z << 4) | (Y << 2) | (X << 0)>::value);
return *this;
}
// operator+
GLM_FUNC_QUALIFIER fvec4SIMD operator+ (fvec4SIMD const & v, float s)
{
return fvec4SIMD(_mm_add_ps(v.Data, _mm_set1_ps(s)));
}
GLM_FUNC_QUALIFIER fvec4SIMD operator+ (float s, fvec4SIMD const & v)
{
return fvec4SIMD(_mm_add_ps(_mm_set1_ps(s), v.Data));
}
GLM_FUNC_QUALIFIER fvec4SIMD operator+ (fvec4SIMD const & v1, fvec4SIMD const & v2)
{
return fvec4SIMD(_mm_add_ps(v1.Data, v2.Data));
}
//operator-
GLM_FUNC_QUALIFIER fvec4SIMD operator- (fvec4SIMD const & v, float s)
{
return fvec4SIMD(_mm_sub_ps(v.Data, _mm_set1_ps(s)));
}
GLM_FUNC_QUALIFIER fvec4SIMD operator- (float s, fvec4SIMD const & v)
{
return fvec4SIMD(_mm_sub_ps(_mm_set1_ps(s), v.Data));
}
GLM_FUNC_QUALIFIER fvec4SIMD operator- (fvec4SIMD const & v1, fvec4SIMD const & v2)
{
return fvec4SIMD(_mm_sub_ps(v1.Data, v2.Data));
}
//operator*
GLM_FUNC_QUALIFIER fvec4SIMD operator* (fvec4SIMD const & v, float s)
{
__m128 par0 = v.Data;
__m128 par1 = _mm_set1_ps(s);
return fvec4SIMD(_mm_mul_ps(par0, par1));
}
GLM_FUNC_QUALIFIER fvec4SIMD operator* (float s, fvec4SIMD const & v)
{
__m128 par0 = _mm_set1_ps(s);
__m128 par1 = v.Data;
return fvec4SIMD(_mm_mul_ps(par0, par1));
}
GLM_FUNC_QUALIFIER fvec4SIMD operator* (fvec4SIMD const & v1, fvec4SIMD const & v2)
{
return fvec4SIMD(_mm_mul_ps(v1.Data, v2.Data));
}
//operator/
GLM_FUNC_QUALIFIER fvec4SIMD operator/ (fvec4SIMD const & v, float s)
{
__m128 par0 = v.Data;
__m128 par1 = _mm_set1_ps(s);
return fvec4SIMD(_mm_div_ps(par0, par1));
}
GLM_FUNC_QUALIFIER fvec4SIMD operator/ (float s, fvec4SIMD const & v)
{
__m128 par0 = _mm_set1_ps(s);
__m128 par1 = v.Data;
return fvec4SIMD(_mm_div_ps(par0, par1));
}
GLM_FUNC_QUALIFIER fvec4SIMD operator/ (fvec4SIMD const & v1, fvec4SIMD const & v2)
{
return fvec4SIMD(_mm_div_ps(v1.Data, v2.Data));
}
// Unary constant operators
GLM_FUNC_QUALIFIER fvec4SIMD operator- (fvec4SIMD const & v)
{
return fvec4SIMD(_mm_sub_ps(_mm_setzero_ps(), v.Data));
}
GLM_FUNC_QUALIFIER fvec4SIMD operator++ (fvec4SIMD const & v, int)
{
return fvec4SIMD(_mm_add_ps(v.Data, glm::detail::one));
}
GLM_FUNC_QUALIFIER fvec4SIMD operator-- (fvec4SIMD const & v, int)
{
return fvec4SIMD(_mm_sub_ps(v.Data, glm::detail::one));
}
}//namespace detail
GLM_FUNC_QUALIFIER vec4 vec4_cast
(
detail::fvec4SIMD const & x
)
{
GLM_ALIGN(16) vec4 Result;
_mm_store_ps(&Result[0], x.Data);
return Result;
}
// Other possible implementation
//float abs(float a)
//{
// return max(-a, a);
//}
GLM_FUNC_QUALIFIER detail::fvec4SIMD abs
(
detail::fvec4SIMD const & x
)
{
return detail::sse_abs_ps(x.Data);
}
GLM_FUNC_QUALIFIER detail::fvec4SIMD sign
(
detail::fvec4SIMD const & x
)
{
return detail::sse_sgn_ps(x.Data);
}
GLM_FUNC_QUALIFIER detail::fvec4SIMD floor
(
detail::fvec4SIMD const & x
)
{
return detail::sse_flr_ps(x.Data);
}
GLM_FUNC_QUALIFIER detail::fvec4SIMD trunc
(
detail::fvec4SIMD const & x
)
{
//return x < 0 ? -floor(-x) : floor(x);
__m128 Flr0 = detail::sse_flr_ps(_mm_sub_ps(_mm_setzero_ps(), x.Data));
__m128 Sub0 = _mm_sub_ps(Flr0, x.Data);
__m128 Flr1 = detail::sse_flr_ps(x.Data);
__m128 Cmp0 = _mm_cmplt_ps(x.Data, glm::detail::zero);
__m128 Cmp1 = _mm_cmpnlt_ps(x.Data, glm::detail::zero);
__m128 And0 = _mm_and_ps(Sub0, Cmp0);
__m128 And1 = _mm_and_ps(Flr1, Cmp1);
return _mm_or_ps(And0, And1);
}
GLM_FUNC_QUALIFIER detail::fvec4SIMD round
(
detail::fvec4SIMD const & x
)
{
return detail::sse_rnd_ps(x.Data);
}
//GLM_FUNC_QUALIFIER detail::fvec4SIMD roundEven
//(
// detail::fvec4SIMD const & x
//)
//{
//}
GLM_FUNC_QUALIFIER detail::fvec4SIMD ceil
(
detail::fvec4SIMD const & x
)
{
return detail::sse_ceil_ps(x.Data);
}
GLM_FUNC_QUALIFIER detail::fvec4SIMD fract
(
detail::fvec4SIMD const & x
)
{
return detail::sse_frc_ps(x.Data);
}
GLM_FUNC_QUALIFIER detail::fvec4SIMD mod
(
detail::fvec4SIMD const & x,
detail::fvec4SIMD const & y
)
{
return detail::sse_mod_ps(x.Data, y.Data);
}
GLM_FUNC_QUALIFIER detail::fvec4SIMD mod
(
detail::fvec4SIMD const & x,
float const & y
)
{
return detail::sse_mod_ps(x.Data, _mm_set1_ps(y));
}
//GLM_FUNC_QUALIFIER detail::fvec4SIMD modf
//(
// detail::fvec4SIMD const & x,
// detail::fvec4SIMD & i
//)
//{
//}
GLM_FUNC_QUALIFIER detail::fvec4SIMD min
(
detail::fvec4SIMD const & x,
detail::fvec4SIMD const & y
)
{
return _mm_min_ps(x.Data, y.Data);
}
GLM_FUNC_QUALIFIER detail::fvec4SIMD min
(
detail::fvec4SIMD const & x,
float const & y
)
{
return _mm_min_ps(x.Data, _mm_set1_ps(y));
}
GLM_FUNC_QUALIFIER detail::fvec4SIMD max
(
detail::fvec4SIMD const & x,
detail::fvec4SIMD const & y
)
{
return _mm_max_ps(x.Data, y.Data);
}
GLM_FUNC_QUALIFIER detail::fvec4SIMD max
(
detail::fvec4SIMD const & x,
float const & y
)
{
return _mm_max_ps(x.Data, _mm_set1_ps(y));
}
GLM_FUNC_QUALIFIER detail::fvec4SIMD clamp
(
detail::fvec4SIMD const & x,
detail::fvec4SIMD const & minVal,
detail::fvec4SIMD const & maxVal
)
{
return detail::sse_clp_ps(x.Data, minVal.Data, maxVal.Data);
}
GLM_FUNC_QUALIFIER detail::fvec4SIMD clamp
(
detail::fvec4SIMD const & x,
float const & minVal,
float const & maxVal
)
{
return detail::sse_clp_ps(x.Data, _mm_set1_ps(minVal), _mm_set1_ps(maxVal));
}
GLM_FUNC_QUALIFIER detail::fvec4SIMD mix
(
detail::fvec4SIMD const & x,
detail::fvec4SIMD const & y,
detail::fvec4SIMD const & a
)
{
__m128 Sub0 = _mm_sub_ps(y.Data, x.Data);
__m128 Mul0 = _mm_mul_ps(a.Data, Sub0);
return _mm_add_ps(x.Data, Mul0);
}
GLM_FUNC_QUALIFIER detail::fvec4SIMD step
(
detail::fvec4SIMD const & edge,
detail::fvec4SIMD const & x
)
{
__m128 cmp0 = _mm_cmpngt_ps(x.Data, edge.Data);
return _mm_max_ps(_mm_min_ps(cmp0, _mm_setzero_ps()), detail::one);
}
GLM_FUNC_QUALIFIER detail::fvec4SIMD step
(
float const & edge,
detail::fvec4SIMD const & x
)
{
__m128 cmp0 = _mm_cmpngt_ps(x.Data, _mm_set1_ps(edge));
return _mm_max_ps(_mm_min_ps(cmp0, _mm_setzero_ps()), detail::one);
}
GLM_FUNC_QUALIFIER detail::fvec4SIMD smoothstep
(
detail::fvec4SIMD const & edge0,
detail::fvec4SIMD const & edge1,
detail::fvec4SIMD const & x
)
{
return detail::sse_ssp_ps(edge0.Data, edge1.Data, x.Data);
}
GLM_FUNC_QUALIFIER detail::fvec4SIMD smoothstep
(
float const & edge0,
float const & edge1,
detail::fvec4SIMD const & x
)
{
return detail::sse_ssp_ps(_mm_set1_ps(edge0), _mm_set1_ps(edge1), x.Data);
}
//GLM_FUNC_QUALIFIER bvec4 isnan(detail::fvec4SIMD const & x)
//{
//}
//GLM_FUNC_QUALIFIER bvec4 isinf(detail::fvec4SIMD const & x)
//{
//}
//GLM_FUNC_QUALIFIER detail::ivec4SIMD floatBitsToInt
//(
// detail::fvec4SIMD const & value
//)
//{
//}
//GLM_FUNC_QUALIFIER detail::fvec4SIMD intBitsToFloat
//(
// detail::ivec4SIMD const & value
//)
//{
//}
GLM_FUNC_QUALIFIER detail::fvec4SIMD fma
(
detail::fvec4SIMD const & a,
detail::fvec4SIMD const & b,
detail::fvec4SIMD const & c
)
{
return _mm_add_ps(_mm_mul_ps(a.Data, b.Data), c.Data);
}
GLM_FUNC_QUALIFIER float length
(
detail::fvec4SIMD const & x
)
{
detail::fvec4SIMD dot0 = detail::sse_dot_ss(x.Data, x.Data);
detail::fvec4SIMD sqt0 = sqrt(dot0);
float Result = 0;
_mm_store_ss(&Result, sqt0.Data);
return Result;
}
GLM_FUNC_QUALIFIER float fastLength
(
detail::fvec4SIMD const & x
)
{
detail::fvec4SIMD dot0 = detail::sse_dot_ss(x.Data, x.Data);
detail::fvec4SIMD sqt0 = fastSqrt(dot0);
float Result = 0;
_mm_store_ss(&Result, sqt0.Data);
return Result;
}
GLM_FUNC_QUALIFIER float niceLength
(
detail::fvec4SIMD const & x
)
{
detail::fvec4SIMD dot0 = detail::sse_dot_ss(x.Data, x.Data);
detail::fvec4SIMD sqt0 = niceSqrt(dot0);
float Result = 0;
_mm_store_ss(&Result, sqt0.Data);
return Result;
}
GLM_FUNC_QUALIFIER detail::fvec4SIMD length4
(
detail::fvec4SIMD const & x
)
{
return sqrt(dot4(x, x));
}
GLM_FUNC_QUALIFIER detail::fvec4SIMD fastLength4
(
detail::fvec4SIMD const & x
)
{
return fastSqrt(dot4(x, x));
}
GLM_FUNC_QUALIFIER detail::fvec4SIMD niceLength4
(
detail::fvec4SIMD const & x
)
{
return niceSqrt(dot4(x, x));
}
GLM_FUNC_QUALIFIER float distance
(
detail::fvec4SIMD const & p0,
detail::fvec4SIMD const & p1
)
{
float Result = 0;
_mm_store_ss(&Result, detail::sse_dst_ps(p0.Data, p1.Data));
return Result;
}
GLM_FUNC_QUALIFIER detail::fvec4SIMD distance4
(
detail::fvec4SIMD const & p0,
detail::fvec4SIMD const & p1
)
{
return detail::sse_dst_ps(p0.Data, p1.Data);
}
GLM_FUNC_QUALIFIER float dot
(
detail::fvec4SIMD const & x,
detail::fvec4SIMD const & y
)
{
float Result = 0;
_mm_store_ss(&Result, detail::sse_dot_ss(x.Data, y.Data));
return Result;
}
GLM_FUNC_QUALIFIER detail::fvec4SIMD dot4
(
detail::fvec4SIMD const & x,
detail::fvec4SIMD const & y
)
{
return detail::sse_dot_ps(x.Data, y.Data);
}
GLM_FUNC_QUALIFIER detail::fvec4SIMD cross
(
detail::fvec4SIMD const & x,
detail::fvec4SIMD const & y
)
{
return detail::sse_xpd_ps(x.Data, y.Data);
}
GLM_FUNC_QUALIFIER detail::fvec4SIMD normalize
(
detail::fvec4SIMD const & x
)
{
__m128 dot0 = detail::sse_dot_ps(x.Data, x.Data);
__m128 isr0 = inversesqrt(detail::fvec4SIMD(dot0)).Data;
__m128 mul0 = _mm_mul_ps(x.Data, isr0);
return mul0;
}
GLM_FUNC_QUALIFIER detail::fvec4SIMD fastNormalize
(
detail::fvec4SIMD const & x
)
{
__m128 dot0 = detail::sse_dot_ps(x.Data, x.Data);
__m128 isr0 = fastInversesqrt(dot0).Data;
__m128 mul0 = _mm_mul_ps(x.Data, isr0);
return mul0;
}
GLM_FUNC_QUALIFIER detail::fvec4SIMD faceforward
(
detail::fvec4SIMD const & N,
detail::fvec4SIMD const & I,
detail::fvec4SIMD const & Nref
)
{
return detail::sse_ffd_ps(N.Data, I.Data, Nref.Data);
}
GLM_FUNC_QUALIFIER detail::fvec4SIMD reflect
(
detail::fvec4SIMD const & I,
detail::fvec4SIMD const & N
)
{
return detail::sse_rfe_ps(I.Data, N.Data);
}
GLM_FUNC_QUALIFIER detail::fvec4SIMD refract
(
detail::fvec4SIMD const & I,
detail::fvec4SIMD const & N,
float const & eta
)
{
return detail::sse_rfa_ps(I.Data, N.Data, _mm_set1_ps(eta));
}
GLM_FUNC_QUALIFIER detail::fvec4SIMD sqrt(detail::fvec4SIMD const & x)
{
return _mm_mul_ps(inversesqrt(x).Data, x.Data);
}
GLM_FUNC_QUALIFIER detail::fvec4SIMD niceSqrt(detail::fvec4SIMD const & x)
{
return _mm_sqrt_ps(x.Data);
}
GLM_FUNC_QUALIFIER detail::fvec4SIMD fastSqrt(detail::fvec4SIMD const & x)
{
return _mm_mul_ps(fastInversesqrt(x.Data).Data, x.Data);
}
// SSE scalar reciprocal sqrt using rsqrt op, plus one Newton-Rhaphson iteration
// By Elan Ruskin, http://assemblyrequired.crashworks.org/
GLM_FUNC_QUALIFIER detail::fvec4SIMD inversesqrt(detail::fvec4SIMD const & x)
{
GLM_ALIGN(4) static const __m128 three = {3, 3, 3, 3}; // aligned consts for fast load
GLM_ALIGN(4) static const __m128 half = {0.5,0.5,0.5,0.5};
__m128 recip = _mm_rsqrt_ps(x.Data); // "estimate" opcode
__m128 halfrecip = _mm_mul_ps(half, recip);
__m128 threeminus_xrr = _mm_sub_ps(three, _mm_mul_ps(x.Data, _mm_mul_ps(recip, recip)));
return _mm_mul_ps(halfrecip, threeminus_xrr);
}
GLM_FUNC_QUALIFIER detail::fvec4SIMD fastInversesqrt(detail::fvec4SIMD const & x)
{
return _mm_rsqrt_ps(x.Data);
}
}//namespace glm

View File

@@ -0,0 +1,90 @@
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_spline
/// @file glm/gtx/spline.hpp
/// @date 2007-01-25 / 2011-06-07
/// @author Christophe Riccio
///
/// @see core (dependence)
///
/// @defgroup gtx_spline GLM_GTX_spline
/// @ingroup gtx
///
/// @brief Spline functions
///
/// <glm/gtx/spline.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#ifndef GLM_GTX_spline
#define GLM_GTX_spline
// Dependency:
#include "../glm.hpp"
#include "../gtx/optimum_pow.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTX_spline extension included")
#endif
namespace glm
{
/// @addtogroup gtx_spline
/// @{
//! Return a point from a catmull rom curve.
/// @see gtx_spline extension.
template <typename genType>
GLM_FUNC_DECL genType catmullRom(
genType const & v1,
genType const & v2,
genType const & v3,
genType const & v4,
typename genType::value_type const & s);
//! Return a point from a hermite curve.
/// @see gtx_spline extension.
template <typename genType>
GLM_FUNC_DECL genType hermite(
genType const & v1,
genType const & t1,
genType const & v2,
genType const & t2,
typename genType::value_type const & s);
//! Return a point from a cubic curve.
/// @see gtx_spline extension.
template <typename genType>
GLM_FUNC_DECL genType cubic(
genType const & v1,
genType const & v2,
genType const & v3,
genType const & v4,
typename genType::value_type const & s);
/// @}
}//namespace glm
#include "spline.inl"
#endif//GLM_GTX_spline

Some files were not shown because too many files have changed in this diff Show More