#version 440 core in vec3 pos; in vec2 uv; in vec3 normal; out vec4 color; uniform sampler2D textureSampler; uniform usampler3D octreeSampler; layout(location = $width$) uniform int width; layout(location = $height$) uniform int height; layout(location = $angle$) uniform float angle; layout(location = $aspect$) uniform float aspect; layout(location = $lightDirection$) uniform vec3 lightDirection; layout(location = $cameraPosition$) uniform vec3 cameraPosition; ivec3 texSize; //************************************ // Intersection test between ray and cube, also gives intersection points as p0 + tmin * ray and p0 + tmax * ray //************************************ bool rayCube(vec3 p0, vec3 ray, vec3 center, float extent, out float tmin, out float tmax, out uint minFace, out uint maxFace) { // Translate ray origin based on cube center p0 -= center; // Get t from ray and cube's plane equations and use it to get the intersection coordinates float t1 = -(dot(p0, vec3(1., 0., 0.)) - extent) / dot(ray, vec3(1., 0., 0.)); vec3 test1 = p0 + t1*ray; float t2 = -(dot(p0, vec3(-1., 0., 0.)) - extent) / dot(ray, vec3(-1., 0., 0.)); vec3 test2 = p0 + t2*ray; float t3 = -(dot(p0, vec3(0., 1., 0.)) - extent) / dot(ray, vec3(0., 1., 0.)); vec3 test3 = p0 + t3*ray; float t4 = -(dot(p0, vec3(0., -1., 0.)) - extent) / dot(ray, vec3(0., -1., 0.)); vec3 test4 = p0 + t4*ray; float t5 = -(dot(p0, vec3(0., 0., 1.)) - extent) / dot(ray, vec3(0., 0., 1.)); vec3 test5 = p0 + t5*ray; float t6 = -(dot(p0, vec3(0., 0., -1.)) - extent) / dot(ray, vec3(0., 0., -1.)); vec3 test6 = p0 + t6*ray; // Check if t was not negative and that the ray-plane intersection falls within the cube face if (t1 < 0. || any(greaterThan(test1.yz, vec2(extent))) || any(lessThan(test1.yz, vec2(-extent)))) t1 = 0.; if (t2 < 0. || any(greaterThan(test2.yz, vec2(extent))) || any(lessThan(test2.yz, vec2(-extent)))) t2 = 0.; if (t3 < 0. || any(greaterThan(test3.xz, vec2(extent))) || any(lessThan(test3.xz, vec2(-extent)))) t3 = 0.; if (t4 < 0. || any(greaterThan(test4.xz, vec2(extent))) || any(lessThan(test4.xz, vec2(-extent)))) t4 = 0.; if (t5 < 0. || any(greaterThan(test5.xy, vec2(extent))) || any(lessThan(test5.xy, vec2(-extent)))) t5 = 0.; if (t6 < 0. || any(greaterThan(test6.xy, vec2(extent))) || any(lessThan(test6.xy, vec2(-extent)))) t6 = 0.; // Initialize tmin and tmax values that define the two intersection points tmin = 9999999999.; tmax = 0.; // Use the lowest value of t that is not 0 for tmin if (t1 > 0. && t1 < tmin) { tmin = t1; minFace = 1; } if (t2 > 0. && t2 < tmin) { tmin = t2; minFace = 2; } if (t3 > 0. && t3 < tmin) { tmin = t3; minFace = 3; } if (t4 > 0. && t4 < tmin) { tmin = t4; minFace = 4; } if (t5 > 0. && t5 < tmin) { tmin = t5; minFace = 5; } if (t6 > 0. && t6 < tmin) { tmin = t6; minFace = 6; } // Use the highest value of t that is not 0 for tmax if (t1 > 0. && t1 > tmax) { tmax = t1; maxFace = 1; } if (t2 > 0. && t2 > tmax) { tmax = t2; maxFace = 2; } if (t3 > 0. && t3 > tmax) { tmax = t3; maxFace = 3; } if (t4 > 0. && t4 > tmax) { tmax = t4; maxFace = 4; } if (t5 > 0. && t5 > tmax) { tmax = t5; maxFace = 5; } if (t6 > 0. && t6 > tmax) { tmax = t6; maxFace = 6; } // If tmin = tmax, the ray origin is within the cube, so set tmin to 0 if (tmin == tmax) tmin = 0.; // If tmax is not 0, an intersection was found return tmax > 0.; } uvec3 getUloc(vec3 p0, vec3 ray, float t, uint hitFace) { vec3 samplePoint = p0 + t * ray; vec3 raySign = clamp(sign(ray), -1, 0); // Calculate the location of the first leaf node that the ray enters uvec3 uLoc = uvec3(floor(samplePoint)); // If the ray is moving in a negative direction, then the uLoc will be one position above the desired position. switch(hitFace) { case 1: case 2: uLoc.x = uint(int(round(samplePoint.x + raySign.x))); break; case 3: case 4: uLoc.y = uint(int(round(samplePoint.y + raySign.y))); break; case 5: case 6: uLoc.z = uint(int(round(samplePoint.z + raySign.z))); break; } return uLoc; } ivec3 wrapNodePointer(in ivec3 samplePos) { // Make sure that the indices are wrapped if the pointer doesn't fit in the current texture if (samplePos.x >= texSize.x) { samplePos.x = samplePos.x % texSize.x; samplePos.y++; if (samplePos.y >= texSize.y) { samplePos.y = samplePos.y % texSize.y; samplePos.z++; } //return vec4(255, 255, 0, float($max_level$ + 1)); } return samplePos; } //************************************ // Given a pointer to a node, and it's childmask, and some child index // returns the nodePointer to the child at the given index. // Note that if the child doesn't exist, it still returns some pointer as if it would. //************************************ uvec3 getNodePointer(uvec3 curNodePointer, uint childMask, uint childIndex) { // Based on the childIndex and the childmask, find out what the index of the childpointer is int childPointerIndex = bitCount(childMask << (31 - childIndex)); // Find sample position in 3D texture corresponding to current node and locat ivec3 samplePos = ivec3(curNodePointer); samplePos.x += childPointerIndex; samplePos = wrapNodePointer(samplePos); // Fetch the pointer from the texture return texelFetch(octreeSampler, samplePos, 0).rgb; } // Fetches the childmask of the node at curNodePointer (note that this is not a mask for leaf nodes!) uint getChildMask(in uvec3 nodePointer) { return texelFetch(octreeSampler, ivec3(nodePointer), 0).b; } bool hasChild(in uint childMask, in uint childIndex) { uint mask = 1 << childIndex; return (childMask & mask) == mask; } uint getChildIndex(uvec3 uLoc, uint level) { uint range = 1 << ($max_level$ - level); return ((uLoc.x & range) == range ? 1 : 0) + ((uLoc.y & range) == range ? 2 : 0) + ((uLoc.z & range) == range ? 4 : 0); } uvec4 sampleOctree(in uvec3 uLoc) { uvec3 result = uvec3(0); uint childMask; uint childIndex; // Traverse octree uint i = 0; for (; i <= $max_level$; ++i) { // Read the childmask (stored in "blue"): childMask = getChildMask(result); // Find the index of the child in which the sampleposition is located childIndex = getChildIndex(uLoc, i); if (!hasChild(childMask, childIndex)) break; result = getNodePointer(result, childMask, childIndex); } // Return level reached return uvec4(result, i); } uvec3 getColor(uvec3 nodePointer) { return texelFetch(octreeSampler, ivec3(nodePointer), 0).rgb; } void main() { uint maxLoop = 300; texSize = textureSize(octreeSampler, 0); // Set color using textures color = texture(textureSampler, uv); // Scale the grid so that all leaf cells have a width of exactly 1: float extent = $extent$; uint range = 1 << ($max_level$ + 1); float rangeF = float(range); float scale = rangeF / (extent * 2.); float offset = extent + 0.5 / scale; // Get ray and sample point vec3 ray = normalize(pos - cameraPosition); uvec3 raySignMask = uvec3(clamp(sign(-ray), 0, 1)); vec3 p0 = (cameraPosition + offset) * scale; // Calculate the new position of the root vec3 rootCenter = vec3(range) * 0.5; float rootExtent = float(range) * 0.5; // Initialize some variables float tmin, tmax, tminRoot, tmaxRoot; uint minFace, maxFace; float leafExtent = 0.5; // Start the ray at the edge of the root cube: bool collision = rayCube(p0, ray, rootCenter, rootExtent, tminRoot, tmaxRoot, minFace, maxFace); if (!collision) // Ray doesn't intersect with root. { //color.rgb = vec3(0,0,1); return; } // Find cell through which the ray enters uvec3 uLoc = getUloc(p0, ray, tminRoot, minFace); // Keep testing ray box intersection, but prevent endless looping int loop = 0; while (!any(greaterThanEqual(uLoc, uvec3(range))) && !any(lessThan(uLoc, uvec3(0))) && loop < maxLoop) { // Check if the current voxel contains geometry, and if so draw it uvec4 result = sampleOctree(uLoc); if (result.w >= $max_level$ + 1) { //color.rgb = vec3(result) / 255.; color.rgb = vec3(float(loop) / 20.); break; } //uint reachedLevelRange = 1 << ($max_level$ - result.w + 1); //float reachedLevelExtent = float(reachedLevelRange) * 0.5; //reachedLevelExtent = 0.5; // Otherwise, advance to the next voxel vec3 curCubeCenter = uLoc + leafExtent; if (!rayCube(p0, ray, curCubeCenter, leafExtent, tmin, tmax, minFace, maxFace)) { //color.rgb = vec3(1, float(maxFace) / 6., 0); color.rgb = uLoc / range; break; } uLoc = getUloc(p0, ray, tmax, maxFace); ++loop; } if (loop == maxLoop) color.rgb = vec3(1, 0, 0); // Discard pixels that are transparent if (color.a < 0.5) discard; }