Files
CDAG/Research/core/OctreeBuilder/RandomOctreeBuilder.cpp

110 lines
3.6 KiB
C++

#include "RandomOctreeBuilder.h"
#include "../Util/Stopwatch.h"
#include "OctreeLoader.h"
#include "../../inc/tbb/parallel_for.h"
RandomOctreeBuilder::RandomOctreeBuilder() :
BaseMaterialOctreeBuilder(),
mTree(NULL),
mCurPassTree(NULL),
mCurPassTreeCoord(glm::uvec3(0))
{}
RandomOctreeBuilder::~RandomOctreeBuilder() {}
std::string RandomOctreeBuilder::GetTreeType() { return "r"; }
void RandomOctreeBuilder::InitTree()
{
mTree = new MaterialTree<BitsMaterial<1>, HashComparer<BitsMaterial<1>>>(GetTreeDepth());
}
void RandomOctreeBuilder::FinalizeTree()
{
// Convert the octree to a DAG
Stopwatch watch;
if (verbose) printf("Converting final tree to DAG...\n");
watch.Reset();
mTree->ToDAG();
if (verbose) printf("Done in %u ms, %llu nodes left.\n", (unsigned)(watch.GetTime() * 1000), (unsigned64)mTree->GetNodeCount());
}
void RandomOctreeBuilder::TerminateTree()
{
OctreeLoader::WriteCache(mTree, GetTreeType(), GetOutputFile(), verbose);
delete mTree;
}
void RandomOctreeBuilder::InitCurPassTree(glm::uvec3 coord)
{
mCurPassTree = new MaterialTree<Color, ColorCompare>(GetSinglePassTreeDepth());
mCurPassTreeCoord = coord;
}
void RandomOctreeBuilder::FinalizeCurPassTree(glm::uvec3 coord)
{
Stopwatch watch;
unsigned8 mainTreeLevel = mTree->GetMaxLevel() - mCurPassTree->GetMaxLevel();
if (mCurPassTree->GetNodeCount() > 1) // Only append the tree (and compress) if it is not empty
{
//std::vector<BitsMaterial<1>> randomMaterials(mCurPassTree->GetNodeCount());
//tbb::parallel_for(size_t(0), randomMaterials.size(), [&](size_t i) { randomMaterials[i] = BitsMaterial<1>((std::rand() < (RAND_MAX / 2)) ? 1 : 0); });
//mCurPassTree->SetMaterials(randomMaterials);
mCurPassTree->PropagateMaterials([](const std::vector<Color>& materials, const std::vector<float>& weights){ return Color::WeightedAverage(materials, weights); });
std::vector<Color> colors = mCurPassTree->GetMaterials();
std::vector<BitsMaterial<1>> bitMaterials(mCurPassTree->GetNodeCount());
unsigned8 shift = 0;
tbb::parallel_for(size_t(0), bitMaterials.size(), [&](size_t i) { bitMaterials[i] = BitsMaterial<1>((colors[i].GetColor().r & (1 << shift)) >> shift); });
auto mCurPassBitTree = new MaterialTree<BitsMaterial<1>, HashComparer<BitsMaterial<1>>>(mCurPassTree->GetMaxLevel());
mCurPassBitTree->MoveShallow(mCurPassTree);
mCurPassBitTree->SetMaterials(bitMaterials);
delete mCurPassTree;
if (mainTreeLevel == 0) // Means we just constructed the root, so no need to append
{
delete mTree;
mTree = mCurPassBitTree;
}
else
{
//Convert the subtree to a DAG first, this saved time when appending and converting the total tree
//Benchmark (Total build time for subtrees of depth 10, final tree of depth 12, Release mode with pool):
// 209.922 seconds without early converting
// 163.645 seconds with early converting
if (verbose) printf("Converting subtree to DAG...\n");
watch.Reset();
mCurPassBitTree->ToDAG();
if (verbose) printf("Converting took %d ms.\n", (int)(watch.GetTime() * 1000));
if (verbose) printf("Appending subtree... ");
mTree->Append(mCurPassTreeCoord, mainTreeLevel, mCurPassBitTree);
delete mCurPassBitTree;
if (verbose) printf("Converting current tree to DAG...\n");
mTree->ToDAG(mainTreeLevel);
}
}
else
{
delete mCurPassTree;
}
}
void RandomOctreeBuilder::AddNode(const glm::uvec3& coordinate, const Color& color)
{
mCurPassTree->AddLeafNode(coordinate, color);
}
std::vector<size_t> RandomOctreeBuilder::GetOctreeNodesPerLevel()
{
return mTree->GetOctreeNodesPerLevel();
}
std::vector<size_t> RandomOctreeBuilder::GetNodesPerLevel()
{
return mTree->GetNodesPerLevel();
}